
Efficiently Exploring Ordering Problems through Conflict-directed Search

Jingkai Chen and Cheng Fang and David Wang and Andrew Wang and Brian Williams
MIT Computer Science and Artificial Intelligence Laboratory

Abstract

In planning and scheduling, solving problems with both
state and temporal constraints is hard since these con-
straints may be highly coupled. Judicious orderings
of events enable solvers to efficiently make decisions
over sequences of actions to satisfy complex hybrid
specifications. The ordering problem is thus fundamen-
tal to planning. Promising recent works have explored
the ordering problem as search, incorporating a spe-
cial tree structure for efficiency. However, such ap-
proaches only reason over partial order specifications.
Having observed that an ordering is inconsistent with
respect to underlying constraints, prior works do not ex-
ploit the tree structure to efficiently generate orderings
that resolve the inconsistency. In this paper, we present
Conflict-directed Incremental Total Ordering (CDITO),
a conflict-directed search method to incrementally and
systematically generate event total orders given order-
ing relations and conflicts returned by sub-solvers. Due
to its ability to reason over conflicts, CDITO is much
more efficient than Incremental Total Ordering. We
demonstrate this by benchmarking on temporal network
configuration problems that involve routing network
flows and allocating bandwidth resources over time.

1 Introduction
Adaptive Large Neighborhood Search has shown impres-
sive results in vehicle routing problems with time windows,
which iteratively destroys and repairs the total order of tasks
to achieve high-quality plans by using heuristics (Ropke
and Pisinger 2006). Timeline-based planners such as tBur-
ton use ordering algorithms to unify multiple timelines such
that sub-solvers can efficiently check the plan’s consistency
(Wang and Williams 2015).

Similar to tBurton, many hybrid planners are designed in
a hierarchical architecture where abstract tasks are gener-
ated by heuristic search or partial-order planning algorithms
and then refined into more concrete courses of actions by
resource managers or schedulers. There has been consider-
able progress in the development of these hybrid planners for
solving problems with temporally evolving numeric effects,
complex objective functions, automatic timed transitions, or

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

temporal uncertainty (Coles et al. 2012; Barreiro et al. 2012;
Fernandez-Gonzalez, Williams, and Karpas 2018; Wang and
Williams 2015; Umbrico et al. 2018). As these abstract tasks
are always partially ordered, these planners impose either to-
tal or partial orders on the tasks in order to enable grounded
consistency check (e.g., temporal consistency) or refinement
(e.g., motion trajectory generation). This motivates us to de-
velop an algorithm to efficiently order these abstract tasks
over time by interacting with different underlying solvers
such that a consistent plan exists under this ordering.

In this paper, we introduce Conflict-directed Incremental
Total Ordering (CDITO), a systematic and conflict-directed
search method to generate consistent total orders of the start
and end events of abstract tasks. CDITO starts with a total
order of these events and incrementally alters inconsistent
partial orders by reasoning over violated ordering relations
or inconsistency discovered by the sub-solvers in terms of
resource capacities or event schedules.

CDITO is built upon the idea of searching the total order
tree introduced in (Ono and Nakano 2005). In this tree, to-
tal orders are arranged in a special structure such that some
subtrees can be pruned with respect to violated partial or-
ders. Another successful work based on (Ono and Nakano
2005) is Incremental Total Ordering (ITO), which is used in
tBurton to unify multiple timelines (Wang 2015). ITO plays
an important role in improving the time and space efficiency
of tBurton by using a queue to store operations of altering
partial orders. We are inspired by ITO to reason over these
operations and extend it to account for inconsistency in sub-
problems.

For total orders found to be inconsistent, we may reason
over which partial orders led to this inconsistency. This al-
lows us to discover conflicting partial orders, which must
be resolved. As we are working over a total order tree, this
problem is one of conflict-directed search, and thus we may
leverage the insights of (Williams and Ragno 2007) to fo-
cus our search by pruning search space. In addition to com-
mon conflict-directed search techniques, CDITO leverages
the special structure of the total order tree to quickly jump
to promising candidate orders.

The idea of interacting with sub-solvers is also used in
Satisfiability Modulo Theories (SMT) solvers such as Z3
(De Moura and Bjørner 2008). As SMT solvers determine
satisfiability of formulas with respect to some background

theories, it can be used to address complex systems of con-
straints. Similar to SMT solvers, CDITO is able to interact
with sub-solvers through propositional combinations of par-
tial orders, which enables our approach to leverage advanced
underlying solvers supporting various user-defined features
for expressivity.

The remainder of this paper is organized as follows. We
first introduce a motivating example, a temporal network
configuration problem that involves routing network flows
and allocating bandwidth resources with respect to the re-
quirements such as loss, delay, and throughput (Section 2).
In Section 3, we give the formal definition of our ordering
problem. We also formulate the motivating example as an
ordering problem in this section. In Section 4, we introduce
the total order tree and a search strategy within this tree.
We also present the methods to extract implicit ordering re-
lations and resolve ordering conflicts. Then, we introduce
the algorithmic details of CDITO. In Section 5, we bench-
mark CDITO against ITO on temporal network configura-
tion problems with different size and complexity and discuss
the empirical results.

2 Motivating Example
Consider a network configuration management problem in
which we need to schedule and route three network flows
and allocate bandwidth resources of a network. In this net-
work, the links have different characteristics of loss, delay,
and bandwidth capacity, as shown in Figure 1.

1

1.0%,
0.1s,
500kbps

0.1%, 0.5s, 500kbps

2

3

0.1%,
0.1s,
500kbps

Figure 1: Network topology.

Table 1 gives the mission specifications of these three
flow on source nodes, destination nodes, maximum loss,
maximum delay, minimum required throughput, and allow-
able duration lengths. The mission also has four temporal
requirements: (1) Flow-B and Flow-C should start imme-
diately when the mission begins; (2) Flow-B and Flow-C
should end at least 20 seconds apart; (3) Either Flow-B or
Flow-C should end before Flow-A starts; (4) the whole mis-
sion should take less than 70 seconds.

Flow Source Sink Loss Delay Throughput Duration
Flow-A 1 2 0.5% 1s 200kbps [30,60]s
Flow-B 1 2 3% 1s 360kbps [30,60]s
Flow-C 1 2 3% 0.3s 360kbps [30,60]s

Table 1: Mission specifications of flows.

There is only one consistent total order for all the events.
This total order and corresponding routes are given in Fig-
ure 2. We also show the temporal constraints of the example

Flow-C End Flow-A Start Mission Start
(Flow-B and Flow-C Start)

Flow-B End Flow-A End

Flow-C

Route: 1 -> 2;
360kbps < Throughput < 500kbps

Flow-A

Route: 1 -> 2;
200kbps < Throughput < 500kbps

Flow-B

Route: 1 -> 3-> 2; 360kbps < Throughput < 500kbps

[30, 60]

(0, 70]

[30, 60]
[20, ∞) ∨ (-∞, -20]

[30, 60]

2 1 34 5

Figure 2: Solution of the motivating example.

in Figure 2. Given the duration requirements on these flows
and the temporal requirements (1) - (2), we know Flow-A
has to overlap with either Flow-B or Flow-C. Given the loss
and delay constraints, we know the only feasible route for
Flow-A and Flow-C is Path 1-2, while Flow-B can choose
Path 1-2 or Path 1-3-2. However, given the bandwidth ca-
pacity constraint, Path 1-2 cannot transfer two flows concur-
rently, and thus Flow-A and Flow-C cannot overlap. There-
fore, Flow-A must start after Flow-C ends and before Flow-
B ends, which leads to the total order and routes in Figure 2.
As we can see, this problem involves routing flows and al-
locating resources with respect to multiple characteristics,
which is hard especially when the mission is over a large
network and involves multiple flows (Chen et al. 2018). The
decision-making problem at a time point is already NP-hard
since it contains the traveling salesman problem as a spe-
cial case. Our motivating example is even more complex
since we need to schedule flows and make these decisions
over time under disjunctive temporal constraints. We show
that our method can efficiently solve this problem by reason-
ing over the ordering information extracted from the mission
specifications and temporal requirements on demand.

3 Problem Formulation
Our ordering problem is given by a tuple 〈E,Φ, h〉:
• E is a set of n events represented by the natural numbers
{1, 2, .., n}.

• Φ is an ordering relation that is a set of clauses, and a dis-
junct of each clause is a partial order a ≺ b that constrains
a ∈ E to precede b ∈ E.

• h : 2L → 〈{>,⊥}, 2Ch〉 is a user-defined consistency
function that maps a total order L of E to a Boolean value
indicating the consistency of L, and a set of ordering con-
flicts Ch. Each conflict c ∈ Ch is a conjunction of partial
orders that are implied by L and result in inconsistency.

A candidate solution of this ordering problem is a total or-
der L that is a sequence of all the events of E. L is a solution
if and only if L satisfies all the clauses in Φ and is checked
to be consistent by h.

Note that we do not allow events to co-occur; thus, we
require a strict ordering such that ¬(a ≺ b) = (b ≺ a).

In general, h can be any evaluable function that returns a
consistency indicator and ordering conflicts Ch from which
implicit ordering relations can be extracted. These relations
are not included in Φ but should hold in terms of the consis-
tency defined by h.

Our motivating example can be formulated as follows:

• E = {1, 2, 3, 4, 5} ≡ {Flow-A Start, Mission Start, Flow-
B End, Flow-C End, Flow-A End} as shown in Figure 2.

• Φ = {ϕ1, ϕ2, ϕ3, ϕ4}, where ϕ1 = 1 ≺ 5, ϕ2 = 2 ≺ 3,
and ϕ3 = 2 ≺ 4 constrain each flow’s start to precede its
end, and ϕ4 = (3 ≺ 1) ∨ (4 ≺ 1) captures the temporal
requirement (3).

• h is able to take as input a total order and determine
whether a valid plan that satisfies all problem require-
ments exits under this total order. If such a valid plan does
not exist, ordering conflicts are returned. To determine the
consistency of a total order, we use the CP solver intro-
duced in (Chen et al. 2018) and Incremental Temporal
Consistency (Shu et al. 2005) to check state and tempo-
ral consistency of the corresponding plan respectively.

Along the search, two other clauses will be extracted from
the ordering conflicts returned by h: ϕ5 = (4 ≺ 1)∨(5 ≺ 2)
is extracted from state inconsistency and means Flow-A and
Flow-C cannot overlap; ϕ6 = (1 ≺ 3)∨ (1 ≺ 4) is extracted
from temporal inconsistency and means Flow-A must start
before at least one other flow ends. The method to extract
implicit ordering relations is introduced in Section 4.3.

4 Approach
In this section, we present the design and implementation
of the CDITO algorithm, which incrementally and system-
atically generates total orders by applying conflict-directed
search. CDITO leverages the ideas and methods from total
order generation and conflict-directed search in the litera-
ture; it uses the ideas of the total order tree from (Ono and
Nakano 2005) and conflict resolution from (Williams and
Ragno 2007) to efficiently explore this total order tree. We
start by reviewing the structure of the total order tree and
the search strategy within this tree. Then, we move on to the
methods to extract implicit ordering relations and resolve or-
dering conflicts, and the CDITO algorithm.

4.1 Total Order Tree
In the total order tree of E = {1, 2, .., n}, nodes are total
orders of E, and edges are operations of altering partial or-
ders of total orders. This tree is rooted at the root total order
Lr = (1, 2, .., n) and constructed by expanding all the chil-
dren of each total order. This tree expansion uses the notion
of total order level that is defined by Ono:

Definition. (Level) The level of a total order L =
(p1, p2, .., pn) 6= Lr is the minimum integer l such that
pl 6= l. The level of Lr is n.

Consider a total order L = (p1, p2, .., pn) with level l. In
order to generate all its children with level 1 ≤ i < l, the
method from Ono deletes pi = i from L and then inserts it
in somewhere (pi+1, pi+2, .., pn) such that the level of this

child is i. To generate all its children, this process is repeated
for every 1 ≤ i < l. The completeness proof of this method
is given in (Ono and Nakano 2005). In this paper, we for-
mally define this operation of moving an event within a total
order as an order move:

Definition. (Order Move) An order move (i → j) deletes
pi from a total order L = (p1, p2, .., pn) and inserts it right
after pj to obtain a total order L′. This operation is denoted
as L′ = L ⊕ (i→ j).

Note that each edge in the tree is an order move, and only
a subset of order moves are represented in the tree. A feasi-
ble order move (i → j) from L with level l should satisfy
two conditions: (1) i < l: a feasible order move should only
move an event that is less than l; (2) i < j: this move should
only right shift an event. Therefore, a total order with level l
has (1 + 2 + ..(l−1)) = l(l−1)/2 children. The total order
tree of E = {1, 2, 3, 4} is given as an example in Figure 3.

As the total order tree constrains feasible order moves
with respect to the total order’s level, an important property
of this tree can be obtained as Lemma 1:

Lemma 1. For a total order with level l, the partial orders
between the events {l, l+ 1, .., n} remain in its descendants.

Proof. Since child generation does not allow moving events
that are larger than the parent’s level, {l, l + 1, .., n} are not
moved, and their partial orders remain in this total order’s
children. Given that all descendants’ levels are less than l,
the partial orders between the events {l, l + 1, .., n} remain
in the descendants of this total order as well.

1234

2134 2314 2341 1324 1342

3124 3214 3241 3142 3412 3421

1243

2143 2413 2431 1423 1432

4123 4213 4231 4132 4312 4321

(1→2
) (1→

3)
(1→

4)
(2
→
3)

(2
→
4
) (3→4)

(1→2
)

(1→
3)

(1→
4)

(1→
2)

(1
→3
)

(1
→
4
)

(1→
2)

(1
→3
)

(1
→
4)

(1→2
)

(1→
3)

(1→
4) (1→

2)

(1
→
3)

(1
→
4
)

(2
→
3
)

(2→4)

Figure 3: Total order tree of E = {1, 2, 3, 4}. The nodes are
total orders; the edges are order moves; the levels of total
orders are in blue.

4.2 Total Order Search
Now we introduce the search strategy within the total order
tree, which basically follows these three rules: (1) children
are visited before siblings, which means our strategy is a
depth-first search. For example, in Figure 3, after 1324 is
visited, the search will visit its child 3124 instead of its sib-
ling 1342; (2) the algorithm backtracks when children are
exhausted or there is no child. For example, after the search
visits 3421, it will backtrack to 1342; (3) from a total or-
der, the group of children with the lowest level i is gen-
erated first, and within a group, children are generated by

right shifting i until the right end. For example, the children
of 1243 are visited in the order of 2143, 2413, 2431, 1423,
and 1432, and the corresponding order moves are (1 → 2),
(1→ 3), (1→ 4), (2→ 3), and (2→ 4).

Algorithm 1: Total Order Search
Input: n
Output: O

1 L ← (1, 2, ..., n) ;
2 O ← [L] ;
3 P ← [(1, 1, n)] ;
4 while P 6= {} do
5 (i, j, l)← P[1] ;
6 if j 6= n then
7 (i†, j†)← (i, j + 1)
8 else
9 (i†, j†)← (i + 1, i + 2)

10 if i† < l then
11 P[1]← (i†, j†, l);
12 L ← L⊕ (i† → j†) ;
13 push L to O ;
14 push (1, 1, i†) to P ;
15 else
16 pop P;
17 if P 6= {} then
18 (i′, j′, l′)← P[1] ;
19 L ← L⊕ (j′ → (i′ − 1));

20 return O

Total Order Search (Algorithm 1) takes as input the num-
ber of events n = |E| and outputs all the total orders O
by following the aforementioned three rules. In Total Order
Search, we use the search status (i, j, l) of a total order L
to compute the next move, where (i → j) records the last
applied order move from L, and l is the level of L. We use
a stack P to store all the search statuses from the root to-
tal order to the current total order, and we initialize it with
[(1, 1, n)] (Line 3). An example in Figure 3 is that, after the
search visits 2431 and backtracks to 1243, the search sta-
tus of 1243 and 1234 are (1, 4, 3) and (3, 4, 4) respectively.
Thus, we have P = [(1, 4, 3), (3, 4, 4)]. Note that P[1] is
the status of the current total order. To generate a child, our
algorithm reads (i, j, l) from P (Line 5) and computes the
next order move (i† → j†) (Lines 6-9). If i† < l, we apply
this order move to obtain a child (Lines 11-14), otherwise
the search backtracks (Lines 16-19).

As introduced in Section 4.1, from a total order L with
level l, there are l(l − 1)/2 feasible order moves (i → j).
Lines 6-9 enforce these order moves to be sorted in the as-
cending order of (ni + j), which follows rule (3).

Our search order is different from the breadth-first search
order used in (Ono and Nakano 2005). We explore the tree
in the same order as ITO (Wang 2015). However, while ITO
uses a queue to store the next several order moves, we use a
stack of search statuses to record the explored search space.
This will be seen to be critical to manipulating the search
order and pruning the search space.

4.3 Extracting Implicit Ordering Relations
In this section, we introduce the methods to find ordering
conflicts from grounded consistency check, such as state and
temporal consistency. Then, we extract implicit ordering re-
lations from these conflicts.

In real-world problems, the requirements are not re-
stricted to ordering relations. A total order that satisfies the
ordering relation Φ may fail to achieve state or temporal con-
sistency. Therefore, the user-defined consistency function h
is used to check the consistency of a total orderL to discover
ordering conflicts from which implicit ordering relations can
be extracted. It is computationally expensive to enumerate
these implicit relations and include them in the ordering re-
lation Φ in the beginning. Instead, these implicit relations
can be found by calling h on demand and then added Φ .

We take state and temporal inconsistency as examples to
show how to extract ordering conflicts and implicit ordering
relations with respect to user-defined consistency.

State Inconsistency We first introduce how to extract or-
dering and implicit ordering relations from state inconsis-
tency, such as exceeding resource capacities. In our motivat-
ing example, Flow-A and Flow-C cannot be transferred con-
currently because the only available path that satisfies their
loss and delay constraints is Path 1-2. However, the band-
width capacity of Link 1-2 is not enough to transfer both of
them together. Therefore, the concurrency of these two flows
leads to an ordering conflict. As Flow-A starts at 1 and ends
at 5, and Flow-C starts at 2 and ends at 4, this ordering con-
flict can be represented as c5 = (1 ≺ 4) ∧ (2 ≺ 5). This
conflict compactly captures all the combinations of this con-
currency: 1254, 1245, 2154, and 2145, which means the start
events of these flows happen before the end events. The im-
plicit ordering relation discovered from this ordering conflict
should prevent Flow-A and Flow-C from being transferred
concurrently. Therefore, this relation is the negation of c5
that is ϕ5 = ¬c5 = ¬((1 ≺ 4)∧ (2 ≺ 5)) = (4 ≺ 1)∨ (5 ≺
2).

We represent the ordering conflict of the concurrency
between two tasks as a conjunction of two partial orders:
Rs

ij = (x`i ≺ xaj) ∧ (x`j ≺ xai), where i and j are the in-
dices of these two tasks; x`i and x`j are the start events; xai
and xaj are the end events. When multiple tasks are concur-
rent, the ordering conflict cs is as follows:

cs = ∧
i,j
Rs

ij = ∧
i,j

(x`i ≺ xaj). (1)

where each Rs
ij represents the concurrency of two tasks.

Assume that m tasks are concurrent, Equation 1 can cap-
ture this concurrency with a conjunction of m(m−1) partial
orders. In every total order featuring this concurrency, if we
halve the involved events into two groups with respect to
this total order, all the start events are in the first group, and
all the end events are in the second group. Thus, this con-
currency can be described by specifying all the precedence
relations between start events and end events while it can
happen in at least (m!)2 total orders.

Given the ordering conflict cs representing the concur-
rency of multiple tasks, we extract an implicit ordering rela-
tion ϕs. As cs should not hold in any consistent total order,

all the partial orders of a consistent total order must entail its
negation ¬cs, and thus ϕs = ¬cs is a clause as follows:

ϕs = ¬ ∧
i,j

(x`i ≺ xaj) = ∨
i,j
¬(x`i ≺ xaj) = ∨

i,j
(xaj ≺ x`i). (2)

The intuitive explanation of ϕs is that some task should end
before others in a consistent total order.

Temporal Inconsistency Ordering conflicts and implicit
ordering relations can also be extracted from temporal in-
consistency. A total order may violate temporal constraints
such as temporal requirements (1) - (4) in our motivating
example, even though we have extracted partial orders from
these temporal requirements. For example, if we order the
start of Flow-A to be after the ends of the other two flows, the
mission horizon will exceed 70 seconds, which violates tem-
poral requirement (4). As each flow takes at least 30 seconds,
and Flow-B and Flow-C should end at least 20 seconds apart,
the mission will take at least 80 seconds under this ordering,
which exceeds 70 seconds. As Flow-A starts at 1, and Flow-
B and Flow-C ends at 3 and 4 respectively, the ordering con-
flict of this temporal inconsistency is c6 = (3 ≺ 1) ∧ (4 ≺
1). Then, the implicit ordering relation discovered from c6 is
the clause ϕ6 = ¬((3 ≺ 1)∧ (4 ≺ 1)) = (1 ≺ 3)∨ (1 ≺ 4),
which means Flow-A should begin before one other flow
ends such that the whole mission takes less than 70 seconds.

We formally model the temporal requirements as a Tem-
poral Constraint Network (Dechter, Meiri, and Pearl 1991).
A total order on the events in the network is equivalent to im-
posing temporal constraints (0,∞) on every pair of events
whose precedence relation is specified by this total order.
As these imposed constraints tighten the network, tempo-
ral inconsistency may be introduced. In the distance graph
form of this network, a temporal consistency checking al-
gorithm is able to detect negative cycles that are composed
of inconsistent temporal constraints. Given a negative cycle,
we use a partial order Rt

i = x−i ≺ x+
i to represent every

temporal constraint that is added because of total ordering
and involved in the cycle. The ordering conflict ct is used to
represent this negative cycle as follows:

ct = ∧
i
Rt

i = ∧
i
(x−i ≺ x+

i). (3)

Similar to extracting an implicit ordering relation from
inconsistent concurrency, we obtain an implicit ordering re-
lation ϕt from ct by using ϕt = ¬ct as follows:

ϕt = ¬ ∧
i

(x−i ≺ x+
i) = ∨

i
¬(x−i ≺ x+

i) = ∨
i
(x+

i ≺ x−i). (4)

The intuitive explanation of ϕt is that some temporal con-
straint (0,∞) involved in the negative cycle should be re-
moved to break this cycle.

4.4 Resolving Ordering Conflicts
In this section, we introduce the method to resolve ordering
conflicts by finding the first order move that is able to jump
over inconsistent total orders with respect to these conflicts.

Recall that Φ is a set of clauses, and thus we can check
every clause against the current total order and determine all
the unsatisfied clauses. An ordering conflict that is a con-
junction of partial orders unsatisfying a clause can be ob-
tained by negating this unsatisfied clause.

To resolve an ordering conflict, the search needs to move
to a total order that negates at least one partial order in this
ordering conflict. The first order move to achieve this nega-
tion is called the constituent kernel of this conflict. The ker-
nel or combined kernel is the last order move of all the con-
stituent kernels, which leads to a subtree where a consistent
total order possibly exists with respect to all the ordering
conflicts.

Constituent Kernel The constituent kernel of an ordering
conflict from a total order is the first order move that leads to
a total order negating at least one partial order in this order-
ing conflict. From another perspective, any order move that
is before the constituent kernel would lead to an inconsis-
tent total order. First consider the root total order 12345 with
the search status (1, 1, 5) in our motivating example. Given
the ordering relation Φ, this total order violates the clause
ϕ4 = (3 ≺ 1) ∨ (4 ≺ 1), and the corresponding ordering
conflict is its negation c4 = (1 ≺ 3) ∧ (1 ≺ 4). In order
to resolve c4, the next generated total order should negate
(1 ≺ 3) or (1 ≺ 4). Recall that an order move (i → j)
with smaller (ni+ j) is taken first with respect to our search
strategy, and thus the search will first try (1→ 2). However,
(1 → 2) will lead to a total order 21345 and the ordering
conflict c4 remains. In addition, 21345 has no child and it
is impossible to resolve c4 in its descendants. Therefore, we
can safely skip (1 → 2) and apply (1 → 3) to generate
23145 that resolves c4. We call (1→ 3) the constituent ker-
nel of c4 from 12345. For the sake of completeness, the con-
stituent kernel should be the first order move in the search
to resolve the ordering conflict even if the subsequent or-
der moves (1 → 4) and (1 → 5) can also resolve c4. We
show an example of breaking completeness by taking order
moves coming after (1 → 3). Assuming that the only con-
sistent solution is 23415 by taking (1 → 4), if we choose
an order move that comes after (1 → 3) such as (1 → 5),
we will skip the solution 23145. By taking (1→ 3), we still
have a chance to reach 23145 by taking (1→ 4) as the next
order move.

Note that the computation of constituent kernels depends
on the current total order. Recall that an order move (i→ j)
means moving the ith event after the jth event in a total order
instead of moving event i after event j. As the constituent
kernel is an order move that negates some partial orders of
a conflict in the current total order, the constituent kernel
varies when the current total order is different. In our moti-
vating example, both 12345 and 12435 violate ϕ5 = (4 ≺
1) ∨ (5 ≺ 2) and share the conflict c5 = (1 ≺ 4) ∧ (2 ≺ 5).
However, their constituent kernels are (1→ 4) and (1→ 3)
respectively since 4 is the fourth event in 12345 but the third
in 12435.

In addition to the current total order, the computation of
a constituent kernel also considers the total order’s level,
which constrains the maximum event to move. Given a level
l, we summarize constituent kernels to three types: (1) when
resolving a conflict requires moving a event less than l, the
order move will lead to its child. The above example of re-
solving the conflict c4 in 12345 is of this type; (2) when
resolving a conflict requires moving the event l, the order

12345

(1→2) for Search status (1, 1, 5)
(1→3) for c4 = (1≺3) ∧ (1≺4)

23145

(1→2) for Search Status: (1, 1, 1)
(3→4) for c5 = (1≺4) ∧ (2≺5)

23415

(1→4) for Search Status: (1, 3, 5)
(1→3) for c4 = (1≺3) ∧ (1≺4)
(1→4) for c5 = (1≺4) ∧ (2≺5)

(1, 2) for Search Status: (1, 1, 1)
(∞→∞) for c6 = (3≺1) ∧ (4≺1)

(2→3) for Search Status: (2, 2, 5)
(1→3) for c4 = (1≺3) ∧ (1≺4)
(1→4) for c5 = (1≺4) ∧ (2≺5)

13245

(3→4) for Search Status: (3, 3, 5)
(1→3) for c4 = (1≺3) ∧ (1≺4)
(1→4) for c5 = (1≺4) ∧ (2≺5)

24135

(2→3) for Search Status: (1, 1, 2)
(∞→∞) for c2 = (3≺2)

(1→2) for Search Status: (1, 1, 3)
(1→3) for c4 = (1≺3) ∧ (1≺4)
(1→3) for c5 = (1≺4) ∧ (2≺5)

12435

Φ = {φ1, φ2, φ3, φ4} ∪ {φ5, φ6}
φ1 = (1≺5)
φ2 = (2≺3)
φ3 = (2≺4)
φ4 = (3≺1) ∨ (4≺1)
φ5 = (4≺1) ∨ (5≺2)
φ6 = (1≺3) ∨ (1≺4)

5
7

1 3

2 4 6 8

1

2

3

5

4

6

7

8

(1
→

3
) (1→

4)

(2→3)
(3→4)

(1
→

3
)

Figure 4: Solving the motivating example by using CDITO in eight iterations. The procedures of computing combined kernels
for these iterations are given in the dotted boxes; the combined kernels are in blue; the implicit ordering relations ϕ5 and ϕ6 are
in red and discovered by the second and fourth iterations respectively.

move will lead straight to the current total order’s sibling.
For example, as 23145 has the conflict c5 = (1 ≺ 4) ∧ (2 ≺
5), we need to apply (3→ 4) to negate (1 ≺ 4), which leads
to its sibling 23415. (3) when resolving a conflict requires
moving a event larger than l, no valid constituent kernel ex-
ists, and we denote it as (∞,∞). For example, resolving the
conflict c2 = (3 ≺ 2) in 13245 requires moving 3. However,
3 cannot be moved in the subtree rooted at 13245 because
the level of 13245 is 2.

Formally, consider a total order L = (p1, p2, ..., pn) with
level l and a corresponding ordering conflict cr = ∧

s∈S(r)
qrs,

where S(r) is the set of indices of the partial orders in cr,
and qrs is the sth partial order of cr. We iterate over every
qrs = (pi′ ≺ pj′) for s ∈ S(r) and then determine the first
order move (i†r → j†r) in the search to negate some qrs. This
order move is the constituent kernel of the ordering conflict
cr from L, which is computed as follows:

(i†r → j†r) = argmin
(i′→j′)∈∆r

(ni′ + j′), (5)

where ∆r = {(i′ → j′) | ((pi′ ≺ pj′) ∈ cr) ∧ (pi′ ≤
l)} ∪ {(∞→∞)}, and (i′ → j′) is the first subsequent or-
der move to negate qrs = (pi′ ≺ pj′). Recall that the order
move with smaller (ni′ + j′) is applied first. Therefore, the
constituent kernel of cr is the order move (i′ → j′) ∈ ∆r

with the smallest (ni′ + j′), which is the first to negate at
least one qrs = (pi′ ≺ pj′). Note that ∆r removes all the
infeasible order moves that require moving the events larger
than l by forcing (pi′ ≤ l). If all the moves are infeasi-
ble, ∆r = {(∞ → ∞)} and (i†r → j†r) = (∞ → ∞).
Therefore, Equation 5 is able to compute all the types of
constituent kernels we just introduced.

Combined Kernel Now we introduce how to combine
multiple constituent kernels to compute a combined kernel
for all the ordering conflicts.

As any order move before a constituent kernel is inconsis-
tent, the combined kernel is the first order move that leads
to a subtree where a consistent total order possibly exists.
For example, the total order 12345 violates ϕ4 = (3 ≺

1) ∨ (4 ≺ 1) and ϕ5 = (4 ≺ 1) ∨ (5 ≺ 2), resulting
in the ordering conflicts c4 = (1 ≺ 3) ∧ (1 ≺ 4) and
c5 = (1 ≺ 4) ∧ (2 ≺ 5). The constituent kernels for c4
and c5 are (1→ 3) and (1→ 4) respectively. The combined
kernel of c4 and c5 should be (1→ 4), which is the first sub-
sequent move to resolve both conflicts. If we apply a move
before this constituent kernel such as (1 → 3) and then ob-
tain 23145, we will notice that 23145 still has the ordering
conflict c5.

Note that the computation of combined kernels also con-
siders the last order move (i → j) that is stored in the
search status (i, j, l) along with the level l. Given a search
status, any order move before the last order move (i → j)
has been taken or skipped and thus is unavailable. There-
fore, the constituent kernels of the ordering conflicts are
probably before (i → j) and cannot be taken. In this case,
we simply follow the standard total order search as shown
in Lines 6-9 in Algorithm 1. For example, the total order
12345 associated with search status (2, 2, 5) has the conflicts
c4 = (1 ≺ 3)∧ (1 ≺ 4) and c5 = (1 ≺ 4)∧ (2 ≺ 5), whose
constituent kernels are (1 → 3) and (1 → 4) respectively.
Since the search status is (2, 2, 5), any order move (i, j) with
(5i + j) < (5× 2 + 2) = 12 has been checked to be incon-
sistent. Therefore, the next order move is (2 → 3), which
follows the standard total order search. More generally, we
can see the search status (i, j, l) as a special ordering con-
flict such that a special constituent kernel (i → j + 1) or
(i + 1 → i + 2) is generated, before which all the order
moves have been checked to be inconsistent by the previous
search.

In addition to the aforementioned three types of con-
stituent kernels, considering the search status introduces the
fourth kernel type (l, l + 1) for combined kernels. The ker-
nel of this type is obtained by substituting i = (l − 1) into
(i + 1 → i + 2), which means a total order’s feasible chil-
dren whose levels are less than l have been exhausted. The
method to handle this kernel along with other combined ker-
nels is introduced in Section 4.5.

Consider a total order L with search status (i, j, l) and or-

Algorithm 2: NEXTMOVE

Input: 〈L, C, i, j, l〉 // C = {cr = ∧
s∈S(r)

qrs | r ∈ R}

Output: (i†, j†)
1 if j 6= n then
2 (i†, j†)← (i, j + 1)
3 else
4 (i†, j†)← (i† + 1, i† + 2)

5 for r ∈ R do
6 (i†r, j

†
r)← (∞,∞);

7 for s ∈ S(r) do
8 (pi′ ≺ pj′)← qrs in L ;
9 if (ni′ + j′) ≤ (ni† + j†) then

10 (i†r, j
†
r)← (1, 1) and break

11 if p′i ≤ l and (ni′ + j′) < (ni†r + j†r) then
12 (i†r, j

†
r)← (i′, j′)

13 if p
i
†
r
> l then return (∞,∞);

14 if (ni† + j†) < (ni†r + j†r) then (i†, j†)← (i†r, j
†
r);

15 return (i†, j†)

dering conflicts C = {cr = ¬ϕr | L violates ϕr ∈ Φ}, we
first compute the constituent kernel (i†r → j†r) for every or-
dering conflict cr ∈ C. Then, the combined kernel (i† → j†)
of C is obtained as follows:

(i† → j†) = argmax
(i

†
r→j

†
r)∈∆†

(ni†r + j†r), (6)

where ∆† = {(i†r → j†r) | (i†r → j†r) is the constituent kernel
of cr ∈ C}∪{(i0 → j0)}. Note that (i0 → j0) is (i→ j+1)
or (i + 1 → i + 2), which is the special constituent kernel
considering the search status. As any order move before a
constituent kernel leads to inconsistent total orders, the com-
bined kernel obtained by Equation 6 is an order move before
which all the order moves are inconsistent with respect to
the search status and all the ordering conflicts.

Now we introduce NEXTMOVE (Algorithm 2) that com-
putes the combined kernel (i†, j†) for a set of ordering con-
flicts C of a total orderLwith search status (i, j, l). The inner
loop (Lines 6-12) computes the constituent kernel (i†r → j†r)
for each ordering conflict cr = ∧

s∈S(r)
qrs by following Equa-

tion 5, and the outer loop computes the combined kernel
(i† → j†) with respect to all the constituent kernels by
following Equation 6. In the inner loop, the algorithm be-
gins with the infeasible order move (Line 6) and updates
the kernel with a nearer order move that negates a partial
order (Lines 11-12). To accelerate this procedure, Line 10
breaks the inner loop when (i†r → j†r) would be entering
an inconsistent subtree with respect to the incumbent of the
combined kernel by following Equation 6. In the outer loop,
Lines 1-4 initialize (i† → j†) with the last order move (i, j).
The algorithm updates (i† → j†) when a constituent kernel
that jumps further is found (Line 14). To accelerate this pro-
cedure, we return the infeasible order move (∞,∞) when
an ordering conflict is unsolvable (Line 13).

Algorithm 3: CDITO
Input: 〈L,P,Φ, h〉
Output: L or {}

1 while Φ is consistent and P 6= {} do
2 if L satisfies Φ then
3 〈consistent?, Ch〉 ← h(L);
4 if consistent? = > then
5 return L
6 else
7 Φ← Φ ∪ {ϕr = ¬cr | cr ∈ Ch}

8 (i, j, l)← P[1] ;
9 C ← {cr = ¬ϕr | L violates ϕr ∈ Φ} ;

10 (i†, j†)← NEXTMOVE(L, C, i, j, l) ;
11 if i† < l then
12 L ← L⊕ (i† → j†);
13 P[1]← (i†, j†, l);
14 push (1, 1, i†) to P ;
15 else
16 pop P;
17 if P 6= {} then
18 (i′, j′, l′)← P[1] ;
19 L ← L⊕ (j′ → (i′ − 1));
20 if l < i† <∞ then P[1]← (i′, j† − 1, l′) ;
21 if i† =∞ then P[1]← ((i′ + 1), (i′ + 1), l′) ;

22 return {};

4.5 CDITO Algorithm
In this section, we present the CDITO algorithm (Algo-
rithm 3). CDITO follows the same search strategy of To-
tal Order Search (Algorithm 1) within a total order tree and
uses combined kernels to jump over inconsistent total orders
(Algorithm 2).

Algorithm 3 takes as input a total order L, a stack of
search statuses P , an ordering relation Φ, and a consistency
function h. CDITO outputs either an empty set (Line 22) or
a total order that satisfies Φ and is checked to be consistent
by h (Lines 2-5).

The consistency function h takes as input a total order and
determines grounded consistency other than Φ. Implicit or-
dering relations can be extracted by negating the ordering
conflicts Ch found by h on demand, such as Equation 2 and
Equation 4. Then, these relations are added into Φ to avoid
generating total orders with similar inconsistency (Line 7).
As shown in Figure 4, h is invoked two times in the total
eight iterations: the second iteration extracts an implicit or-
dering relation ϕ5 from inconsistent concurrency, and the
fourth iteration extracts ϕ6 from temporal inconsistency.

In order to compute the combined kernel (i† → j†), the
algorithm collects all the ordering conflicts C (Line 9) and
inputs C into NEXTMOVE (Algorithm 2) along with the cur-
rent total order L and the search status (i, j, l) (Line 10).

Recall that there are four types of combined kernel (i† →
j†), and they are handled differently (Lines 11-21): (1)
i† < l; (2) l < i† < ∞;(3) i† = ∞; and (4) i† = l. As
shown in Figure 4, the motivating example is solved by 8 it-

erations: the second iteration is of type (2), the fourth and the
sixth iterations are of type (3), and the other iterations are of
type (1). When a kernel is of type (1), we directly take it to
generate a child (Lines 12-14). For the other types, CDITO
backtracks (Lines 16-19) but updates the parent’s search sta-
tus in different ways. When a kernel is of type (4), the search
status is not updated, which is the same as Lines 16-19 in Al-
gorithm 1. In the following two paragraphs, we will focus on
type (2) and type (3).

When l < i† < ∞, the kernel is of type (2), and
CDITO updates the parent’s search status to (i′, j† − 1, l′)
(Line 20). This prunes all the descendants of the current
total order, its siblings generated by taking order moves
(i′ → j′ + 1), (i′ → j′ + 2), .., (i′ → j† − 1), and all
the descendants of these siblings. Since this kernel requires
moving pi′ after pj† , some conflicts exist in these siblings
until (i′ → j†) is taken. By Lemma 1, these conflicts also
remains in the descendants of these siblings, and thus all
these total orders can be safely pruned.

When i† = ∞, the kernel is of type (3), CDITO updates
the parent’s search status to (i′+1, i′+1, l′) (Line 21). This
prunes all the descendants of the current total order, all its
siblings with level l, and all the descendants of these sib-
lings. Since there exist some ordering conflicts that require
moving an event larger than l, these conflicts remain in its
siblings with level l. By Lemma 1, these conflicts also re-
main in the descendants of this total order and these siblings
as well.

5 Experiments
To evaluate the effect of incorporating the conflicts from
state and time for the total order search, we benchmarked
CDITO against ITO (Wang 2015) on temporal network
configuration problems with different complexity and size.
These problems involve routing flows and allocating band-
width resources with respect to requirements on loss, delay,
bandwidth, and deadlines. Note that our motivating example
is also a temporal network configuration problem.

The problems were provided by a communication net-
work simulator that generates network flows with random
duration constraints and characteristic requirements on a
meshed network. The simulator setup is as follows: (1) the
mission horizon is 300s; (2) the meshed network has 16
nodes and 240 links; (3) the required loss, delay, and band-
width of each link are uniformly generated from continuous
intervals [0.1,0.3]%, [0.1,0.3]s, and [500,1000]kbps; (4) the
loss, delay, throughput, minimum duration of each network
flow are uniformly generated from [0.1,0.3]%, [0.1,0.3]s,
[600,1000]kbps, and [20,80]s; (5) the generator adds tempo-
ral constraints between randomly chosen events with a dura-
tion (0,100], and the number of temporal constraints is one
fifth of the number of flows.

We combined two sub-solvers to construct the consistency
function h: (1) we used a CP solver in (Chen et al. 2018) to
reason over routing and bandwidth allocation with respect
to loss, delay, and bandwidth constraints; (2) Incremental
Temporal Consistency (Shu et al. 2005) was used to check
the temporal consistency of plans.

We tested five scenarios of 10, 20, 30, 40, and 50 flows
with CDITO and ITO. We ran 100 trials for each scenario,
and the timeout, which is the duration between two replan
requests in real-world experimental devices, was 20 seconds.

#flows
CDITO ITO

#solved NS NU #solved N ′
S N ′

U

10 94 7 221 9 1 233
20 91 6 27 5 1 38
30 86 5 10 6 1 18
40 82 4 16 11 1 21
50 74 5 14 8 1 24

Table 2: Experimental results. #solved: number of solved
trials; NS , NU : average number of calls to h in solved and
unsolved trails by using CDITO; N ′S , N ′U : average number
of calls to h in solved and unsolved trails by using ITO.

Table 2 shows that CDITO solves most of the problems,
while ITO solves few in 20 seconds. It can be seen that
CDITO finds consistent solutions quickly after calling h
around five times in all the solved trials, which demonstrates
that CDITO is capable of using conflicts to efficiently guide
search and avoid unnecessary order generation or consis-
tency check. However, N ′S equals 1 in all the solved trials,
which means, in large-scale problems, ITO can find solu-
tions only if a good initial order is generated. Overall, as
#flows increases, checking grounded consistency is more ex-
pensive. Thus, both methods generate fewer orders in un-
solved trials, and we observe the significant decreases of
NU and N ′U . In every scenario, NU is slightly less than N ′U ,
which demonstrates that efforts put on reasoning over con-
flicts are not expensive compared to other costs. Note that, as
CDITO prunes a large portion of total orders, CDITO goes
further within the total order tree than ITO with the same
number of order generations.

6 Conclusion
In this paper, we presented CDITO, a systematic and incre-
mental algorithm that efficiently orders the events in a par-
tially ordered plan by applying conflict-directed search on a
tree of total orders. Given the ordering conflicts discovered
in the search, CDITO is able to generate resolutions to skip
inconsistent total orders by exploiting the special structure
of the total order tree. During the search, our method also ex-
tracts implicit ordering relations from grounded consistency
check such as state and temporal consistency. CDITO thus
avoids unnecessary and expensive state and temporal consis-
tency check. This is supported by our experiments on tempo-
ral network configuration problems generated by a commu-
nication network simulator, which empirically demonstrate
the efficiency of CDITO over ITO.

Acknowledgements. This project was funded by the De-
fense Advanced Research Projects Agency under grant Con-
tract No. HR0011-15-C-0098.

References
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.; Kichkaylo,
T.; Morris, P.; Ong, J.; Remolina, E.; Smith, T.; et al. 2012. Eu-

ropa: A platform for ai planning, scheduling, constraint program-
ming, and optimization. 4th International Competition on Knowl-
edge Engineering for Planning and Scheduling (ICKEPS).
Chen, J.; Fang, C.; Muise, C.; Shrobe, H.; Williams, B. C.; and Yu,
P. 2018. Radmax: Risk and deadline aware planning for maxi-
mum utility. In AAAI Workshop on Artificial Intelligence for Cyber
Security (AICS’18).
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin: Plan-
ning with continuous linear numeric change. Journal of Artificial
Intelligence Research 44:1–96.
De Moura, L., and Bjørner, N. 2008. Z3: An efficient smt solver.
In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 337–340. Springer.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial intelligence 49(1-3):61–95.
Fernandez-Gonzalez, E.; Williams, B.; and Karpas, E. 2018.
Scottyactivity: Mixed discrete-continuous planning with convex
optimization. Journal of Artificial Intelligence Research 62:579–
664.
Ono, A., and Nakano, S.-i. 2005. Constant time generation of
linear extensions. In FCT, 445–453. Springer.
Ropke, S., and Pisinger, D. 2006. An adaptive large neighborhood
search heuristic for the pickup and delivery problem with time win-
dows. Transportation science 40(4):455–472.
Shu, I.-h.; Effinger, R. T.; Williams, B. C.; et al. 2005. Enabling
fast flexible planning through incremental temporal reasoning with
conflict extraction. In ICAPS, 252–261.
Umbrico, A.; Cesta, A.; Mayer, M.; and Orlandini, A. 2018. In-
tegrating resource management and timeline-based planning. In
ICAPS, 264–272.
Wang, D., and Williams, B. 2015. tburton: A divide and conquer
temporal planner. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.
Wang, D. 2015. A Factored Planner for the Temporal Coordi-
nation of Autonomous Systems. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Williams, B. C., and Ragno, R. J. 2007. Conflict-directed a* and
its role in model-based embedded systems. Discrete Applied Math-
ematics 155(12):1562–1595.

