
Fast Execution of Temporal Plans with Mixed

Discrete-Continuous State Constraints

by

Jingkai Chen

B.E., Zhejiang University (2016)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

@ Massachusetts Institute of Technology 2019. All rights reserved.

A u th or
Signature redacted

Department of Aeronautics and Astronautics
June 1, 2019

Certified by............................

Accepted by

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 01 2019

LIBRARIES
ARCHIVES

Signature redacted
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Signature redacted
Sertac Karaman

Associate Professor of Aeronautics and Astronautics
Chairman, Graduate Program Committee

2

Fast Execution of Temporal Plans with Mixed

Discrete- Continuous State Constraints

by

Jingkai Chen

Submitted to the Department of Aeronautics and Astronautics
on June 1, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

There has been a dramatic rise in networked embedded systems that play a central role
in complex tasks. To achieve high performance and robustness, these systems need
to configure and reconfigure on the fly, in light of the task requirements and system
states. Communications networks, for example, plan routes and allocate bandwidth
resources over time for different communication activities, while respecting through-
put, delay, loss, and deadline constraints. However, existing approaches use simple
discrete models to achieve goal sequences and thus cannot provide a high-fidelity plan
for complex plan specifications in terms of time and state.

In this thesis, we deliver Amundsen, an efficient configuration manager that sup-
ports complex concurrent tasks over time and state by reasoning over high-fidelity
models. These models can encode different actuation modes with discrete and con-
tinuous specifications and temporal influences. Amundsen provides plans meeting
mission requirements, which specify the timing of events, outline the mode changes
throughout the mission, and allocate resources. The primary challenge of the con-
figuration management problem is the computation required to handle the state and
time constraints that are highly coupled.

We address this challenge through the critical insight that the configuration man-
agement problem may be efficiently solved by dividing the problem into smaller sub-
problems such as scheduling and resource allocation, which is achieved by total order-
ing the events that represent time points in the goal specification. Each sub-problem
may then be solved efficiently with existing highly optimized algorithms. We make
two main technical contributions in this thesis. First, we identify the relevant sub-
problems in the existing configuration management problems and provide tractable
encodings. Second,' we provide an algorithm to efficiently order the stages of the
problem by learning and communicating the requirements for successful solutions to
the sub-problems.

We provide empirical evidence of the efficiency of Amundsen by benchmarking
against UnifyHistory, a state-of-the-art solver to configure systems by unifying mul-
tiple timelines, on a communication network simulator. We show that our approach

3

can dynamically manage hundreds of network requests over a network with hundreds
of communication links in simulated missions given strict time limits. Our approach
is also able to find plans in 10 times as many scenarios as the baseline solver. The
work described in this thesis thus significantly advances the configuration manage-
ment problem, both theoretically and practically.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

4

Acknowledgments

This thesis would not have been possible without the support of my mentors and

friends during my time at MIT.

First and foremost, I would like to thank my advisor, Professor Brian Williams,

for welcoming me into MERS and providing brilliant insights, support, and advice for

my research. His guidance and detailed comments on drafts helped me go through

every step of writing this thesis. I would also like to thank Dr. Howard Shrobe and

Dr. Christian Muise for mentoring me over the past years.

I am thankful to all the members of the MERS group for sharing their genius

with me. In particular, I would like to thank Simon Fang and Christian Muise, who

worked with me on the EdgeCT project, and Yuening Zhang and Marlyse Reeves,

who have been working with me on the Creative Problem Solver Project. It is also

a great experience to work with Eric Timmons and other labmates to develop the

constraint optimization solver OpSat. Thanks everybody who have provided detailed

comments on this thesis: Andrew Wang, Simon Fang, Cyrus Huang, Yuening Zhang,

Marlyse Reeves, and Nick Pascucci.

I am grateful to my family and friends at MIT and around the world for encour-

aging me, inspiring me, and sharing good times and hard times with me.

Finally, I would like to thank and acknowledge DARPA for sponsoring this work

for two and a half years.

5

6

Contents

1 Introduction 15

1.1 Motivating Scenario . 16

1.2 Approach in a Nutshell . 19

1.3 Summary of Contributions . 26

1.4 Organization of Thesis . 27

2 Related Work 29

2.1 Configuration Management . 29

2.2 Timeline-based Planning and Scheduling 30

2.3 Classical Problems Featuring Timed Configuration 31

2.4 Sum m ary . 32

3 Problem Statement 33

3.1 Timed Configuration Management Problem 35

3.2 Example: Temporal Network Configuration Problem 38

3.3 Sum m ary . 42

4 Episodic Constraint Satisfaction Problem 43

4.1 Related W ork . 44

4.2 D efinitions . 45

4.3 Sum m ary . 47

5 Amundsen: Timed Configuration Manager 49

5.1 Amundsen Architecture . 49

7

5.2 From TCMP to Episodic CSP 51

5.3 Sum m ary 52

6 CDES: Conflict-directed Episodic Satisfaction 53

6.1 Related Work 54

6.2 CDES Algorithm 54

6.3 Decomposition 56

6.4 CDITO: Conflict-directed Incremental Total Ordering 58

6.5 ITC: Incremental Temporal Consistency 59

6.6 ISC: Incremental State Consistency 60

6.7 Sum m ary . 63

7 CDITO: Conflict-directed Incremental Total Ordering 65

7.1 Problem Formulation . 67

7.2 Related W ork . 69

7.3 Total Order Tree . 70

7.4 Total Order Search . 72

7.5 Conflict Extraction . 75

7.6 Conflict Resolution . 76

7.6.1 Single-Conflict Resolving Move 77

7.6.2 Multiple-Conflict Resolving Move 79

7.7 NextMove Algorithm . 79

7.8 CDITO Algorithm . 81

7.9 Incorporating Non-strict Orderings 84

7.10 Sum m ary . 87

8 Experimental Results 89

8.1 Experiment Description . 89

8.2 R esults . 90

8.3 Sum m ary . 91

8

9 Conclusion 93

9.1 Summary of Contributions . 93

9.2 Future W orks . 94

A Network Configuration Problem 97

A.1 Problem Specification . 97

A.2 Constraint Modeling and Encoding 100

9

10

List of Figures

1-1 Network topology and link characteristics. 17

1-2 A temporal plan of configurations that specifies routes and bandwidth

allocations of network flows along these routes. 19

1-3 Initial state and goal plan of the motivating example. LS is a link

automaton with the locations On and Off, and FSj is a flow automaton

with the locations On and Off. 22

1-4 Control plan of the motivating example that gives the bandwidth and

paths at the start of the plan, and their configuration changes during

the mission. The temporal constraints between configuration changes

are om itted in this figure. 23

1-5 Amundsen architecture. 23

1-6 An Episodic CSP example with 7 events, 3 temporal constraints, 2

uniform episodes and 2 constant episodes. 24

1-7 Decomposition example with E5 as the breakpoint. 25

1-8 Ordered Episodic CSPs. 25

1-9 Conflict-directed Episodic Satisfaction (CDES) architecture. 26

3-1 Link m odel. 39

3-2 Flow m odel. 40

3-3 Initial state and goal plan of the motivating example. 41

3-4 Control plan of the motivating example. We omit all the temporal

controls and cmd variables . 41

11

4-1 An Episodic CSP example with 7 events, 3 temporal constraints, 2

uniform episodes and 2 constant episodes. Note that state variables

are om itted here. 43

5-1 Amundsen architecture. 50

6-1 Conflict-directed Episodic Satisfaction (CDES) architecture. 55

6-2 Am Episodic CSP example with 7 events, 3 temporal constraints, 2

uniform episodes and 2 constant episodes. 57

6-3 The DAG of the example with only the edges starting or ending at the

candidate breakpoint E5 . 57

6-4 Decomposition example with E5 as the breakpoint. 58

6-5 Main Components (MCs) of ordered Episodic CSPs. 61

7-1 Ordering problem example as an Episodic CSP. 67

7-2 Total order tree of E = {1, 2, 3, 4}. The nodes are total orders; the

edges are order moves; the levels of total orders are blue. 73

7-3 Solving the motivating example by using CDITO in eight iterations.

The procedures of computing resolving moves for these iterations are

given in the dotted boxes; the resolving moves are in blue; the implicit

ordering relations W5 and 06 are in red and discovered by the second

and fourth iterations, respectively. 81

A-i Network topology for the example problem. 97

A-2 An example of successor assignments satisfying ProperCircuit, for a

flow with source 1 and sink 5. 105

12

List of Tables

1.1 Link characteristics and available durations. 17

1.2 Requirements of network flow requests. 18

6.1 Order change effects to Main Components (MCs). 62

7.1 Solving the motivating example by using CDIITO in eight iterations. 82

7.2 Extracting constraints C from the ordering relation 4D for the motivat-

ing example with the solution L = (2 -< 4 -< 1 -< 3 -< 5). 87

8.1 Experimental results. #solved: number of solved trials; Ns, Nu: av-

erage number of total order generations in solved and unsolved trails by

using Amundsen; Ns, N[': average number of total order generations

in solved and unsolved trails by using the baseline solver. 90

13

14

Chapter 1

Introduction

A wide range of real-world problems involves configuring systems in light of tightly

coupled time and state constraints. For example, an automated system commanding

multiple underwater vehicles to explore the seafloor [33] must schedule multiple data-

gathering tasks and configure the control signals during these tasks for vehicles given

the presence of currents along with timing and spatial requirements on the tasks. As

a second example, Livingstone, the configuration manager of the spacecraft Cassini,

configures the components of its engines such as fuel tanks and valves over time, such

that the desired thrust can be provided by the engines to navigate the spacecraft [39].

The third example is a mission-aware communication manager that must plan routes

and allocate bandwidth resources for network flows with requirements on bandwidth,

loss, delay, and deadlines. In both instances, the planner must decide on not only the

time at which each activity or flow is executed but also the system settings during an

activity. These decisions must also conform to constraints on timing, system dynam-

ics, and goal specifications. Thus, there is a strong demand for automated systems

to schedule tasks and configure system settings under a combination of discrete and

continuous state constraints together with timing requirements.

In this thesis, we show that networked embedded systems can achieve high levels

of performance through Amundsen, a timed configuration manager that reasons over

hybrid models with discrete and continuous constraints.

This chapter motivates the problem of timed configuration management in hy-

15

brid discrete and continuous domains and presents Amundsen, a timed configuration

manager as the solution approach. Amundsen is able to configure both discrete and

continuous parameters of an embedded networked system to achieve desired behav-

iors over time. We begin by introducing scenarios that motivate us to develop a

high-performance timed configuration manager. Then, we present this timed configu-

ration manager that supports complex concurrent tasks and highlight several modules

of this manager that are critical to the efficiency. We end this section by summarizing

our contributions and the organization of the rest of this thesis.

1.1 Motivating Scenario

One example of a timed configuration management problem is network configuration.

Judicially configuring a communication network and being mission-aware can enable

it to transfer more data, especially when the link capacities fluctuate. To config-

ure a communication network, a communication manager plans routes and allocates

bandwidth resources for multiple network flows subject to throughput, delay, loss,

and deadline constraints, given a temporal plan of flow modes. A network flow is

a communication request, such as a data transfer request for a teleconference, and

a flow mode is an actuation state such as transferring or off. More specifically, the

manager generates routes satisfying loss and delay requirements and allocates usable

bandwidth for each flow over time. For example, a File Transfer Protocol (FTP) flow,

which demands a high bandwidth channel, and a Voice over Internet Protocol (VoIP)

flow, which demands low delay, will be provided with different routes. In addition,

configuring network flows requires the manager to reason over temporal constraints

in order to fulfill deadlines and precedence relations. For example, two flows that

cannot transfer concurrently need to be scheduled at different times, such that both

of them can complete.

Our example scenario is modeled after a communication mission between four

stations. The network topology is shown in Figure 1-1, and the loss, delay, bandwidth

capacity, and available duration of each link are given in Table 1.1. Table 1.2 shows

16

the requirements of each network flow that is described in terms of the duration of

communication, minimum allowable bandwidth, and maximum allowable loss rate and

delay. In addition to the communication durations, which are specified as temporal

constraints, FTP-A must complete at least 10 seconds and at most 15 seconds before

FTP-B.

<0.5%, 0.1s, 500kbps>

<0.1%,
0.1s,
500kbps>

<0.5%,
0.1s,
500kbps>

","MM

<0.1%, 0.1s, 500kbps>

Figure 1-1: Network topology and link characteristics.

Link characteristics and available durations.

Given the temporal constraints, the requirements of

topology, and the link characteristics, a communication

network flows, the network

manager should be able to

provide a temporal plan that specifies the configurations of the system over time,

where a configuration is a route and bandwidth allocation along this route for each

17

<0.1%,
0.1s,
500kbps>

Table 1.1:

ID Link Loss Delay Bandwidth Available Duration

1 1-2 0.5% 0.ls 500kbps [0, 8lmins
2 2-1 0.5% 0.s 500kbps [0, 8]mins
3 1-3 0.1% 0.1s 500kbps [4, 8lmins
4 3-1 0.1% 0.s 500kbps [4, 8lmins
5 1-4 0.1% 0.ls 500kbps [0, 4]mins
6 4-1 0.1% 0.ls 500kbps [0, 4]mins
7 2-4 0.5% 0.s 500kbps [0, 8]mins
8 4-2 0.5% 0.s 500kbps [0, 81mins
9 3-4 0.1% 0.ls 500kbps [4, 8]mins
10 4-3 0.1% 0.s 500kbps [4, 8]mins

Table 1.2: Requirements of network flow requests.

ID Flow Source Sink Loss Delay Throughput Data Duration
1 VOIP 1 4 0.5% 0.3s 200kbps 72000kb [360, 400]s
2 FTP-A 3 4 3% is 360kbps 64800kb 180s
3 FTP-B 2 3 3% Is 360kbps 14400kb 40s

flow. An example of this temporal plan is shown in Figure 1-2. The reasoning process

to obtain this plan is as follows: because VoIP's duration is more than 6 minutes, we

cannot fit it into either four-minute interval of the entire eight-minute horizon. In

the first four minutes, path 1-3-4 is broken, and path 1-2-4 has too high loss rate.

Hence the only available path for this VoIP is directly from 1 to 4. In the second four

minutes, since path 1-4 is broken, VoIP should be routed to path 1-3-4. We can only

start the flow in the second four minutes because path 3-4 and path 3-1 are broken.

Hence no flow can go out of 3. In the second four minutes, VoIP only leaves 300kbps

bandwidth on link 1-4, which is not enough for any FTP, therefore FTP-A can be

only routed to path 3-1-2-4. Given the temporal constraints of FTP-B, it is the last

one to transfer, and two routes are available.

The above reasoning process is challenging given the mixed discrete and contin-

uous nature of the constraints. More specifically, choosing the route for each flow

is a discrete problem, and reasoning over bandwidth capacity requires dealing with

continuous variables. Another significant part of this problem is the presence of time

such as temporal constraints, and the state constraints and temporal constraints are

highly coupled. For example, flows can be either scheduled to different times or routed

to different paths to save resources for other flows.

These features are also common in other problems beyond network configuration.

For example, to configure a fleet of underwater vehicles, we need to decide on the task

assignment over vehicles, which are discrete, and the motion trajectories and timing

constraints, which are continuous.

To capture these problem features, we define a new class of problems called timed

configuration management problems (TCMP), where systems with both discrete and

18

Mission Start

Voip Start

4 minutes

FTP-A Start

Voip End

FTP-A End

FTP-B Start

FTP-B End

Mission End

VoIP

Routing: 1 -> 4
Throughput > 200kbps
Throughput < 500kbps

Routing: 1 -> 3 -> 4 FTP-A
Throughput > 200kbps
Throughput < 500kbps Routing: 3 -> 1 -> 2 -> 4

Throughput > 360kbps
Throughput < 500kbps

FTP-B

Routing: 2 -> 4 -> 3
Alternative: 2 -> 1 ->3
Througphut > 360kbps
Througphut < 500kbps

Figure 1-2: A temporal plan of configurations that specifies routes and bandwidth

allocations of network flows along these routes.

continuous settings are configured over time to achieve temporally concurrent goals.

We then develop Amundsen, a high-performance timed configuration manager that

supports complex tasks in terms of state and time by reasoning over high fidelity

models with mixed discrete and continuous constraints, and temporal influences.

1.2 Approach in a Nutshell

In this section, we begin by reviewing the related work this thesis is built on. Then,

we introduce the features of TCMPs and briefly introduce its solution, the timed

configuration manager Amundsen.

Related Work

This thesis solves a configuration problem that was originally proposed by Livingstone

[39], a configuration manager for space systems. Livingstone is able to identify a

sequences of optimal configurations that achieve a set of goals. It also introduces

a form of Conflict-directed Search that allows Livingstone to scaled to large sets of

19

devices. This core solution method and problem was then generalized in the form of

Optimal Satisfaction Problems and the OpSat solver [401.

As this thesis is directly built upon the concept of a configuration problem and

its generalization as an optimal satisfaction solver, we are able to handle continuous

temporal or state constraints, which are two of the key additional features of our

configuration problems.

The tBurton planner generalizes Livingstone to handle both temporal constraints,

and planning of concurrent sequences of temporal actions [38, 371. Addressing the

interplay between temporal constraints and planning for concurrent actions is no-

toriously difficult. Key to tBurton's effective management of this interaction is an

algorithm called UnifyHistory, which accumulates all goals related to a timeline and

consistently orders these goals along the timeline, before planning for these goals all

at once. tBurton does not handle systems with mixed discrete and continuous con-

straints since further planning sequences of actions in this hybrid domain is difficult.

Amundsen takes a middle ground between Livingstone and tBurton. While Amund-

sen handles temporal constraints and temporal goals along a timeline like tBurton,

but like Livingstone, it does not extend planning into planning action sequences. We

create this temporal variant of Livingstone by combining OpSat from Livingstone and

UnifyHistory from tBurton, to produce a timed configuration manager and a general

purpose Episodic CSP solver. Finally, we extend the configuration manager into hy-

brid domains by leveraging both discrete and continuous state constraints, supported

by this extended Opsat.

Finally, a key component of OpSat is its conflict-directed search algorithm. To

achieve efficiency for solving Episodic CSPs, we incorporate a novel form of conflict-

directed search to the core algorithm of UnifyHistory called Incremental Total Or-

dering. The enhanced new algorithm is called Conflict-directed Incremental Total

Ordering.

20

TCMP: Timed Configuration Management Problem

TCMPs model complex configuration management problems over time by generalizing

simple goal sequences to a set of temporally synchronized concurrent goals described

by temporal plans on goal states. To be high-performance, the problems use hy-

brid automaton that encode different actuation modes with discrete and continuous

constraints and temporal influences.

The problem consists of a plant model, a goal plan, and the initial state of the

system being configured. The solution of this problem is a control plan that is a

temporal plan of configurations, such that the system can achieve the goal plan by

executing these configurations.

A plant model is a hybrid concurrent automaton (HCA), which is a set of interact-

ing hybrid automata. Each automaton specifies several locations to represent system

modes under which different sets of constraints are specified. In our motivating ex-

ample, we have two kinds of automata for links and network flows, respectively. For

example, a link automaton has the locations On and Off, and network flows can be

only transferred when this link is at the location On.

We give the initial state and goal plan of the motivating scenario in Figure 1-

3, where LSj and FSj are a link automaton and a flow automaton, respectively.

The initial state gives the locations of these automata when time t = 0; the goal plan

specifies a set of desired behaviors of these automata and a set of temporal constraints

between these behaviors.

To solve this problem, a timed configuration manager should reason over the plant

model and generate a temporal plan of configurations for the system being configured,

such that all the automata can achieve the behaviors specified in the goal plan. We

call this temporal plan of configurations a control plan of this problem, which is given

in Figure 1-4 as a formal representation of Figure 1-2. Again, a configuration in the

motivating example is the route and bandwidth allocations that are represented by the

control variables Path and.BW, respectively. To efficiently generate such a control

plan is hard since constraints on both discrete variables (i.e., Path) and continuous

21

0 Event

Temporal Constraint

Episode

Initial State Goal Plan

LS1.L = L52.L = On [

LS7.L = LS8.L = On I

LS11.L= LS12.L = On JLS3L= Off

LS3.L = Off [240, 240]

,[240, 240]

LS5.L = On 5. = Off --'------

[240, 240]L56.L O - a L56L=Off ------- '--'
LS6.L = On L16.5 = Off

4 [240,240]

L59.L = On L9 =f 00

[240, 240]

LS1.L Off 0 L = Off Links

[360, 400] Flows

FS1.L= Off F51.LOn

[180, 180]

FS2.L= Off FS1.= On
[10,15]

[40, 40]

F53.L= Off F n

6 6
Figure 1-3: Initial state and goal plan of the motivating example. LSj is a link

automaton with the locations On and Off, and FSj is a flow automaton with the

locations On and Off.

variables (i.e., BW) are involved, and timing requirements are also significant in this

example.

Amundsen: Timed Configuration Manager

Now we briefly introduce how the timed configuration manager Amundsen solves a

TCMP. The architecture of Amundsen is given in Figure 1-5. Amundsen is comprised

of a plan compiler that translates the problem into an episodic constraint satisfaction

problem (Episodic CSP), an Episodic CSP Solver that solves the translated problems,

and a solution complier that translates a solution of the Episodic CSP to a control

plan. An Episodic CSP consists of events that are non-negative real variables to rep-

resent points in time, temporal constraints between event pairs, state variables, and

episodes that are timed constraints between event pairs over a set of state variables.

22

F51.BW = 00 0SB 0,0

J ->4 1 ->3 -> 4 Null

F51.Path = NULL,

360 0

F52.BW = 0 0
3 -> I - 2 - 4 Null

FS2.Path = NULL 0 0
360 0

FS2.BW = 0 0 C
2 -> 4 -> 3 Null

FS3.Path = NULL 0 -

0 c
Temporal cons tints are include in controlTlphhIbut nittdinthis figure.00ht

Figure 1-4: Control plan of the motivating example that gives the bandwidth and

paths at the start of the plan, and their configuration changes during the mission.

The temporal constraints between configuration changes are omitted in this figure.

Goal Plan
r--------------------- ----

Amundsen

Pnt PaCmperInitial State
PlantPlan Compiler

CDES

Control Plan-
rSolution Compiler >Plant

Figure 1-5: Amundsen architecture.

An example of an Episodic CSP is given in Figure 1-6. It is natural to think of this

problem as an extension of a constraint satisfaction problem (CSP) over time since

solving a TCMP finds a control plan that satisfies the specified behaviors in the goal

plan, given the initial state and the plant model. For example, network management

requires a plan of routes and bandwidth allocations over time for the network flows,

such that all the flows can be transferred during their corresponding time windows.

The plan compiler collects the partial states to represent the system behaviors

specified in the goal plan, and the constraints required to hold under each location.

As a result, we obtain an Episodic CSP with all the constraints specified at a time

point or across intervals. While the solution of a CSP is an assignment of all the

variables, which is consistent with all the constraints, the solution of an Episodic

CSP is a group of control trajectories that satisfy the episodes. The obtained control

23

trajectories are represented as a control plan.

O Een Uniform Episode

pTemporal Constraint -E - -+ Constant Episode

[120, 1201 (0, -)

Ep3 Ep4
E4 E7

[15,[60, 601 90 [60, 751 01D
[15, oo)Epl [0 o p 0 o

El E2 E3 E5 E6

Figure 1-6: An Episodic CSP example with 7 events, 3 temporal constraints, 2 uniform
episodes and 2 constant episodes.

CDES: Conflict-directed Episodic Satisfaction

The performance of Amundsen highly depends on the efficiency of the underlying

Episodic CSP solver. Thus, to efficiently solve Episodic CSPs, we develope a solver

called Conflict-directed Episodic Satisfaction (CDES), which is built on the same

hybrid framework as UnifyHistory in tBurton [37] but improves its ordering module

and the state consistency checking algorithm. To solve an Episodic CSP, CDES de-

composes the problem into sub-problems and solve them independently. An example

of decomposition is given in Figure 1-7. Then, to handle the temporal constraints

(e.g., deadlines) and the state constraints (e.g., routing constraints and resource con-

straints), the solver focuses on searching for a total order of events under which a

feasible solution exists. As in the reasoning process outlined above for the motivating

example, such a total order is important since it is futile to decide routes before a

good total order is found. With this total order, the entire horizon can be divided

into a sequence of stages, where a stage is an interval between two adjacent events.

Then, the solver can further determine the stage lengths and the assignments of con-

trol variable during each stage. Three total ordered instances are given in Figure 1-8,

where each instance is dived into 4 stages by the event ordering. The architecture of

CDES is given in Figure 1-9.

We implement CDES by extending OpSat [40] to an Episode CSP solver and

incorporating an enhanced ordering module from UnifyHistory [37], which is also in-

24

[120, 120] (0, -) (0, -)

Ep3 V~--Ep4' I Ep4"
E4 E7

[60, 60] 6, 5
[15, oo) Epl Ep2 75

El E2 E3 E5: E6

Figure 1-7: Decomposition example with E5 as the breakpoint.

El E2 E3 E4 E5
---------- ----------------

Ep3 Ep4

EI E2 E4EIE

Ep.El E2 E4 E3 E5
- -------------- - ------------Ep31 EpV*

IE I

El E4 E2 E3 E5
--- -------------- -----

Ep3 Ep4'

Epi

Figure 1-8: Ordered Episodic CSPs.

dicated by eOpSat. As shown in Figure 1-9, CDES is comprised of three parts: (1)

the decomposition module divides an Episodic CSP into several pieces according to

the independences between episodes over time and state, and then these pieces can

be solved independently; (2) Conflict-directed Incremental Total Ordering (CDITO)

starts with a total order of all the events in an Episodic CSP and generates a new

total order by altering part of the total order when the current total order is infeasi-

ble; (3) Incremental Temporal Consistency (ITC) and Incremental State Consistency

(ISC) are used to check the temporal consistency and state consistency of the ordered

Episodic CSP, respectively. If the ordered Episodic CSP is consistent, a solution is

returned. Otherwise, the inconsistency is summarized as clauses of partial orders that

are leveraged by CDITO for the next order generation. Note that our approach is

incremental: CDITO only changes a small portion of partial orders within the current

total order at each generation, and our algorithms only check the consistency of part

25

of the plan that is different from the previous plan in most cases, which is important

to the efficiency of our algorithm.

Episodic CSP

CDES

Decomposition

ECSPs

CDITO

I ordered ECSPs conflicts

ITC & ISC

solutions for Episodic CSPs I

Merge

Episodic CSP solution

Figure 1-9: Conflict-directed Episodic Satisfaction (CDES) architecture.

1.3 Summary of Contributions

In this thesis, we solve timed configuration management problems for networked de-

vices over long horizons. We summarize our contributions as follows:

1. Solving Timed Configuration Management

We introduce a new class of configuration management problems called TCMP,

in which we configure the discrete and continuous parameters to achieve the

desired behavior of systems over time. We also developed the timed configura-

tion manager Amundsen to solve TCMPs, and the efficiency of Amundsen was

demonstrated by benchmarking on a communication network management sim-

ulator. This approach combines key insights from Livingstone for configuring

networked devices, tBurton and UnifyHistory for planning concurrent processes,

and constraint programming for managing hybrid constraints.

26

2. Solving Decision-Making Problems over Time

We propose a new class of constraint satisfaction problems with timed con-

straints called Episodic CSPs. This representation can model many real-world

scenarios featuring decision making over time as well as capture the TCMPs

proposed'in this thesis. We developed an efficient Episodic CSP Solver called

CDES to power Amundsen.

1.4 Organization of Thesis

The rest of this thesis is organized as follows: we begin by reviewing the background

and literature related to timed configuration management in Chapter 2. Then, we

introduce the formal definitions of TCMPs in Chapter 3. As we solve TCMPs by solv-

ing their corresponding Episodic CSPs, we first introduce the definitions of Episodic

CSPs in Chapter 4. In Chapter 5, we present the architecture of Amundsen, which

is used to generate control plans for TCMPs. Then, we describe CDES, the solution

approach of Episodic CSPs, in Chapter 6. In Chapter 7, CDITO, which is the core

module of CDES to generate total orders, is presented. We end this thesis by demon-

strating the efficiency of our solver in Chapter 8 and discussing the conclusions and

future works in Chapter 9.

27

28

Chapter 2

Related Work

In this chapter, we review previous works related to our timed configuration manage-

ment problems and timed configuration manager. We first discuss the predecessor of

our work, the configuration manager Livingstone [391. Then, we introduce other tem-

poral planners that solve similar problems. We will also discuss the classical problems

that are special cases of the problem we are solving.

2.1 Configuration Management

As this thesis is directly built upon the concept of a configuration problem and its

generalization as an optimal satisfaction solver. We draw a lot of insights from Liv-

ingstone [391, a model-based reactive self-configuring autonomous system. Livingston

along with HSTS planning system [271 and RAPS executive [13] managed the space-

craft Deep Space One. Livingstone models system components through concurrent

transition systems that communicate through shared variables. It reasons over the

control variables to achieve the desired trajectory specified by the planner HSTS,

where the trajectory is a sequence of qualitative states of system components. Our

timed configuration manager and Livingstone are similar: they both configure the low-

level control variables to instantiate the specified behaviors as the goal. Our planner

extends the problem to be timed and hybrid in two aspects. First, our planner uses

concurrent hybrid transition systems and reasons over both discrete and continuous

29

control variables, while the control commands in Livingstone are of discrete domains.

Second, to specify the desired behaviors of system components, we use a goal plan

that not only includes the qualitative state of components but also requires metric

temporal features, such as how long these components stay within a qualitative state.

This encoding provides more accurate modeling power for time-critical and complex

missions.

2.2 Timeline-based Planning and Scheduling

In complex system management problems, planning and scheduling are usually repre-

sented with the same paradigms and interleaved with the same mechanisms. Planning

and scheduling are traditionally two distinct but complementary processes of man-

aging complex systems over a receding temporal horizon. Planning decides on the

course of actions to achieve specific goals, and scheduling instantiates a set of plans

by assigning execution times to these actions concerning resource and temporal con-

straints.

Classical planning systems such as STRIPS [12 and PDDL [26] represent actions

as instantaneous transitions between states. Then, PDDL2.1 [14] extends PDDL to

describe temporal planning problems by introducing durative actions. Timeline-based

planning exploits stronger structuring assumptions used in classical scheduling [1] and

was first introduced in HSTS [27]. Timelines are continuously-varying state variables

that represent the evolution of system features up to a given time, and constraints

are expressed on the trajectories of these timelines. Other timeline-based planning

paradigms are also introduced in [4, 15, 6]. Advanced timeline-based planners, in-

cluding EUROPA [2], ASPEN [7], and tBurton [38] have been developed in the past

decades. Recent advances in the PLATIUm system integrate planning and scheduling

to manage discrete and reservoir resources and take into account execution flexibility

and temporal uncertainty [25, 35, 34].

Overall, our advance over existing representations is to include complex constraints

over trajectories such as constraints over discrete and continuous variables, which are

30

useful in describing complex systems and goal specifications.

More specifically, Amundsen takes a middle ground between Livingstone and tBur-

ton. While Amundsen handles temporal constraints and temporal goals along a time-

line like tBurton, but like Livingstone, it does not extend planning into planning ac-

tion sequences. We create this temporal variant of Livingstone by combining OpSat

from Livingstone and UnifyHistory from tBurton, to produce a timed configuration

manager and a general purpose Episodic CSP solver. In addition, we extend the con-

figuration manager into hybrid domains by leveraging both discrete and continuous

state constraints, supported by this extended Opsat.

2.3 Classical Problems Featuring Timed Configura-

tion

Making decisions over time is a significant topic in scheduling and planning commu-

nities, and there are many classical problems featuring time.

The classical problem Vehicle Routing Problem with Time Windows (VRPTW)

is a well-known integer programming problem which belongs to the category of NP-

hard problems. It originates from the Vehicle Routing Problem (VRP), extending

it with additional time constraints. In the VRPs, we need to configure a fleet of

vehicles to pick up and deliver the packages of customers, and VRPTW specifies

certain time windows during which customers are available in specific locations. In

VRPTW, there are resource constraints such as the maximum capacity of each ve-

hicle to carry packages, and time windows. VRPTW can be a special case of timed

configuration management problems and has been well studied. Thus our solution

methods also draw insights from methods used to solve VRPTW, such as tackling

ordering problems.

Other problems such as Job Shop Scheduling Problems also feature resource allo-

cation and time reasoning in which we need to allocate limited resources to multiple

tasks over time carefully. In general, our framework and many classical problems are

31

different in two aspects. First, these problems such as Job Shop Scheduling and their

solution methods always deal with discrete time, which restricts solution efficiency

and execution flexibility. In our framework, we can freely choose the time repre-

sentation as a continuous or discrete timeline. In addition, our output control plan

does not fix the schedule, enabling robust and flexible execution with the presence

of execution uncertainty over time. Second, instead of only considering the resource

constraints that are linear inequalities, we allow much more complex constraints over

time such as All-Different, Circuit, and Element. These constraints are required for

the expressiveness to plan over more complex systems and requirements.

2.4 Summary

In this chapter, we summarized the previous works of configuration management from

which our framework is extended. We also discuss the timeline-based planners that

are related to our work, and the classical problems that can be regarded as special

cases of the problem this thesis aims at.

In the following chapters, we present a formal definition of timed configuration

management problems that provide high-fidelity models to represent systems being

configured, and a goal specification to describe the required system behaviors with

the presence of concurrency and metric timing requirements. We also give a solution

approach that is efficient to reason over these high-fidelity models and complex goal

specifications.

32

Chapter 3

Problem Statement

In this chapter, we define the timed configuration management problem (TCMP) that

Amundsen solves. Amundsen is designed to configure embedded networked systems

with constraints over both discrete and continuous variables to achieve temporally

concurrent goals.

One example of a TCMP is the network management problem introduced in Sec-

tion 1.1, where multiple flow requests must be configured, respecting requirements on

bandwidth, delay, loss, deadlines over a set of communication links. Given the link

characteristics and these network flow requirements, Amundsen must generate routes

and bandwidth allocations along the route over time for all the flow requests, such

that all the requirements are satisfied while respecting the capacity of links.

To model and solve such a problem, TCMPs extend the configuration management

problem Livingstone solves [39] to be hybrid and timed: (1) the model is high-fidelity

and has both discrete and continuous variables under different modes of systems,

while the variables of the previous configuration management problems are discrete;

(2) to specify the desired behaviors of system components, TCMPs uses a goal plan

that extends the step-wise transitions to include metric temporal features, such as

how long they must stay within a mode, which provides more accurate modeling

power for time-critical and complex missions. In the following two paragraphs, we

use the example in Section 1.1 to illustrate the necessity of these two features.

Network management requires modeling different system behaviors under vari-

33

ous system modes. For example, the capacity of a link to transfer flow requests is

different when a link is functional or unavailable. In addition, the constraints of

these behaviors might involve both continuous and discrete variables - such as con-

tinuous bandwidth capacity and discrete routes - which requires our model to be

hybrid. This motivates us to use hybrid automata that can capture both discrete and

hybrid constraints under different modes over time. Since an embedded networked

system always consists of multiple sub-systems, we compose several hybrid automata

along with the constraints between these automata to generate a hybrid concurrent

automaton (HCA) to describe a system.

Another significant feature of TCMPs is temporally concurrent goals. As we

saw in Section 1.1, each network flow must be transferred within a time window

where the start and end are not fixed time points, and multiple flow requests are

possibly transferred concurrently. Similar to the Chekov, tBurton and Kongming

planners, these temporal configuration goals are represented using qualitative state

plans [17, 37, 241. Thus, to describe these temporally concurrent goals, we use a

temporal plan whose activities specify the behaviors of sub-systems, such as flow

requests being transferring or turned off, while metric temporal constraints are used

to describe the timing relations among these activities.

A TCMP is comprised of a plant model of a system, a goal plan, and the initial

state of the system. The solution of a TCMP is a set of trajectories of control variables

over time as a control plan, such that the system can evolve from the initial state and

follow the requirements of the goal plan by executing this control plan.

In the rest of this chapter, we first present the definition of TCMP. Then, we

introduce hybrid automata and HCA, which specifies feasible transitions between

different modes and corresponding constraints under each mode for sub-systems and

the entire systems respectively. Then, we defined the goal plan that specifies the

desired system behaviors. We also define a control plan that is the solution of a TCMP.

We end this chapter by modeling our motivating example introduced in Section 1.1

as a TCMP.

34

3.1 Timed Configuration Management Problem

A TCMP consists of a plant model expressed as a set of concurrent and interacting

hybrid automata, plus a temporal goal specification that imposes temporal constraints

on the desired bebaviors of those hybrid automata. We also specify the initial state

of the system and assume all the variables are known when t = 0. Formally, TCMP

is defined as follows:

Definition 1 (TCMP). A TCMP is a tuple (M, GP, E), comprised of a hybrid con-

current automaton M, a goal specification GP, and an initial state E.

While the HCA specifies constraints over both discrete and continuous variables

under different modes for a set of sub-systems, the goal plan is a temporal plan that

gives a the desired behaviors of the system. An HCA consists of a set of sub-systems,

and e ach sub-system is represented by a hybrid automaton that describes the behavior

of a single component or process, such as a communication link or a network flow.

We begin by defining each sub-system as a hybrid automaton as follows:

Definition 2 (Hybrid Automaton). A hybrid automaton is a 5-tuple (P, L, X, U, FC, T):

" P is a set of discrete or continuous parameters that are constants over time.

" L is the unique location variable. dom(L) consists of the locations over which

this system transitions.

" X is a set of state variables, and each state variable x G X : R>0 -+ dom(x) is

a function of time. X consists of a set of discrete state variables Xd , and a set

of continuous state variables Xc.

A valuation val for X is a function that assigns a value to each state variable

of X.

A state s = (1, v) consisting of a location 1 E dom(L) and a valuation v of X.

A partial state is an assignment to a subset of { L} U X .

35

" U = Ud U U, U Ux is a set of interface variables. Ud is a set of discrete control

variable; U, is a set of continuous control variable; Ux is a set of state variables

of other automata;

" Fc: dom(L) -+ 2C is a function that maps a location to a set of constraints

C that scope on P, X, and the derivations of the continuous state variables

XC, which specifies a feasible space E XU'kCU of X and Xc under the parameter

setting P.

" T is a set of transitions of the form T = (1, ', g), each of which associates with

a source location 1 c dom(L), a target location l' E dom(L), and a guard g.

The transition is enabled when g is satisfied. We assume g is in the form of

assertion of a discrete control variable ud G Ud.

We extend the timed automata in the tBurton planning problem to be hybrid [371.

The main difference is that hybrid automata supports a larger range of constraints

under each location. We restrict the supported constraints to all the constraints

in 13]. We also make the assumption that the guard of transitions is the form of

assertion, and there exists a transition between every pair of locations. This is the

same assumption used in the Livingstone configuration problem [391.

To model several components within a system, we compose a set of hybrid au-

tomata to produce an HCA. An HCA specifies a set of interacting hybrid automata

and the global constraints of their state variables under different location combina-

tions. We define the HCA as follows:

Definition 3 (HCA). An HCA is a tuple M = (CS, U, FGC):

o CS = {S 1, S2 , --, S.} is a set of hybrid automata.

o U = Ud U U, is a set of control variables. Ud is a set of discrete control variables,

and Uc is a set of continuous control variables.

The goal plan specifies a set of temporally concurrent goals. This is useful when

we plan for networked devices over a long horizon with multiple goals as well as timing

constraints between these goals. The goal plan is defined as follows:

36

Definition 4 (Goal Plan). Goal plan GP is a tuple (E, EP, TC):

* E is a set of events with real domains.

" EP is a set of episodes. Each episode is a a tuple (eF, e , D, x) , where ep and

e A are the start and end events, D is a duration constraint between the start

and end events, and x is a partial state that must hold during this episodes.

" TC is a set of temporal constraints scoping on E.

Note that the goal plan GP gives all the desired states. Thus, the transitions of

the locations are known to the configuration manager. However, the time when the

transitions happen is partially known. Although every transition T is associated with

a symbolic event that is allowed to happen during an interval, the exact timing of the

transition is unknown.

The configuration manager returns a valid control plan CP that provides a set

of piecewise control trajectories and entail the desired transitions. Meanwhile, it

maintains execution flexibility by associating each control value change with a sym-

bolic event, which is similar to the goal plan GP. A control plan is a solution of

P = (M, GP, 0), and we formally define the control plan as follows:

Definition 5 (Control Plan). A control plan CP is a tuple (E, CT, TC):

" E C GP.E is a set of events with real domains.

" T is a set of timed sequences of configurations. For each control variable u G U,

there is a sequence t e T, and each element is a timed configurations (e, p).

The control variable is changed to value p at the event e G E.

" TC is a set of temporal constraints scoping on E.

37

3.2 Example: Temporal Network Configuration Prob-

lem

In this section, we formulate the motivating example in Section 1.1 as a Temporal

Network Configuration Problem (TNCP), which is an example of TCMP focusing on

managing flow requests in terms of routing, throughput, loss, delay, and deadlines.

We begin by introducing two components in the form of hybrid automata: the link

model LM and the flow model FM, and then we compose multiple links and flow

requests to produce a network model that is an HCA in which several flow requests

and links are interacting with each other. We also give examples of its goal plan and

control plan. Note that we only use abstract functions to represent the constraints

over routing, delay, loss, and bandwidth, and more encoding details can be found in

Appendix A.

Link Model

Links are fundamental components of a communication network. Each link starts

from a source node s and ends at a sink node t, and it can transfer a group of

flow requests from s to t if the total throughput BW does not exceed its bandwidth

capacity bw. In addition, links are also characterized by loss rate 1 and delay d.

Formally, the link model LM = (P, L, X, FC, T) is defined as follows:

* P = {s, t, bw, l, d}

" L E {On, Of}.

" X = {BW}.

" U = {cmdL} U {Pathi, BW j for every Flow i}.

" FC is:

- FC(On): BW < bw; ComputeBW(Pathj, BW)

- Fc(Off): BW =0; ComputeBW(Pathj, BW)

38

* T is:

- (= On, cmdL = Off, Off)

- T2 =(Off, cmdL = On, On)

Link Model

Parameters P = {s, t, bw, I, d}
Location L E {On, Off}
Variables X = {BW}
Control Variables = {cmdL}

cmdL = Off

On Off
BWsbw BW=0

ComputeBW ComputeBW

cmdL = On

Figure 3-1: Link model.

As we can see in Figure 3-1, a link can be in two locations: On or Off, which means

this link is functional or unavailable because of some unknown reasons. 71 and r2 are

two transitions between On and Off. The details about the constraint ComputeBW

are given in Appendix A.

Flow Model

Another fundamental component is the network flow. Each flow is a data transfer

request that starts from a source node s and ends at a sink node t for transferring an

amount of data. When a flow is transferring, the loss and delay must not exceed the

maximum allowable loss I and the maximum allowable delay d that are accumulated

along the chosen route. Formally, the flow model FM = (P, L, X, FC, T) is defined

as follows:

" P = {s, t, bw, l, d}

" L E {Off, On}.

" X = {L, D}.

* U = {cmdF, BW, Path} U {sjtj, 1j I for every Link j}

39

e FC is:

- FC(Off): BW = 0

- FC(On):

* BW > bw;

* LossConstraint(l, Path, u{(sj, tj, lj)});

* DelayConstarint(d, Path, {(s, tj, l)}).

* T is:

- T 1 = (Off, cmdF = On, On)

-r2 = (On, cmdF = Off, Off)

Flow Model

Parameters P = {s, t, bw, I, d}
Location L E {Off, On}
Variables X = {L, D}
Contol variables {cmdF, BW, Path}

cmdF = On

Off On
BW=0 BW>bw

LossConstraint

cmdF = Off DelayConstraint

Figure 3-2: Flow model.

As we can see, a flow can be in two locations On and Off. While the location

On and Off can transition to each other by setting the command cmdR to On and

Off, respectively. When a flow is Off, no constraint is applied. However, when this

flow is On, the loss and delay must not exceed the specified values, and the data is

accumulated at the destination with the rate bw. The details about the constraints

Compute-Delay and Compute-Loss are given in Appendix A.

We also define another flow model CFM that forces the bandwidth to be constant

during the flow being transferring. This is the case when some flow requests must

have constant throughput for the sake of service quality, such as a VoIP flow for an

online meeting. Therefore, when CFS.L = On, we add another constraint BW = 0.at

40

0 Event

Temporal Constraint

-- r- Episode

Initial State Goal Plan

LS1.L = LS2.L- = On
LS7 = LS8.L = On 40,240]

LS11.L LS12.L = On 3- - -

LS3.L- Off 0 [240, 240]

L4.L[= Off [240, 240]

L5.L= On L5.LfOff[240, 2401

LS6.L =On L56.1 Off[240, 2401

L9.L= On L.L Off
S[240, 240]

LS1. = Off S1. =Off3 Li k
3, [240, 240]

LS1.L- = Off FS. = 6n
I3 Links

-------- --- ----

FS1L=Of O"""""'3.[360, 400] ,Flows

[180, 180]

FS2.L= Off FS1.L =On

[10,151

- [40,40] #

FS3.L = Off 3S3 = On

0 0

Figure 3-3: Initial state and goal plan of the motivating example.

200 0
FS1.BW = 0 -- --- i

1->4 1->3->4 Null
FS1.Path = NULL

360 0
FS2.BW = 0

3 1 -> 2 -> 4 Null

FS2.Path = NULL

360 0
FS2.BW = 0

2->4->3 Null
F53.Path = NULL

6
Temporal constraints are included in control

plans but are omitted in this figure.

Figure 3-4: Control plan of the motivating example. We omit all the temporal controls

and cmd variables.

41

Goal Plan and Control Plan

We show an example of a goal plan in Figure 3-3, where all three flow requests are

required to be On for a certain amount of time. No episodes are specified for links

LS1, LS2, LS7, LS8, LS11, and LS12. Other links should be turned off either in the

first four minutes or the second four minutes, where temporal constraints [240, 2401

are specified for the corresponding episodes. We also show the initial locations of all

the systems on the left of this goal plan.

The corresponding control plan is given in Figure 3-4, where the values of control

variables, such as the bandwidth allocation and route of each flow, change at some

events.

3.3 Summary

In this chapter, we presented the formal definition of the timed configuration man-

agement problem that consists of a plant model, a goal plan, and an initial state.

The plant model is a hybrid concurrent automaton that composes several interacting

hybrid automata. The goal plan specifies the partial states of these automata over

time with metric temporal constraints. We also show an instance of this problem for

the configuration of communication networks.

As reasoning over such a high-fidelity model and complex goals is hard in terms of

efficiency, we present a high-performance, efficient solution approach called Amundsen

in Chapter 5. As Amundsen translates the TCMPs to a a class of problems called

Episodic CSPs and then leverages an efficient solver to solve them, we first introduce

the definitions of Episodic CSPs in the next chapter.

42

Chapter 4

Episodic Constraint Satisfaction

Problem

In this chapter, we introduce the formal definitions of Episodic CSPs, which are

decision-making problems with state constraints over time. We also review the similar

representations that are used to model decision-making problems over time.

An Episodic CSP is comprised of a set of events to represent time points, a set

of temporal constraints between these events, a set of state variables, and a set of

episodes to constrain these state variables during some intervals between event pairs.

An example of an Episodic CSP is given in Figure 4-1.

Q Event ~--> Uniform Episode

r> Temporal Constraint -I:j-- Constant Episode

[120, 120] (0. -0)

Ep3 -O- Ep4|

[1 , o) [60, 60] 19 ,)[60, 751
[1 ,)Ep EP2 (,)

El E2 E3 E5 E6

Figure 4-1: An Episodic CSP example with 7 events, 3 temporal constraints, 2 uniform
episodes and 2 constant episodes. Note that state variables are omitted here.

The motivation to introduce Episodic CSP is that we solve timed configuration

management problems by solving their correspoding Episodic CSPs. While the plant

43

model provides the constraints of a system under certain locations, the goal plan

specifies the desired behaviors of this system over time. Solving this problem is

equivalent to finding a set of trajectories of the control variables, such that all the

constraints to achieve the desired behaviors are satisfied. This problem is a constraint

satisfaction problem scoping on these control variables. Thus, we use Episodic CSPs

to capture the constraints extracted from the initial state, the plant model, and the

goal plan.

4.1 Related Work

As Episodic CSPs extend the classical CSPs with the notion of time, it can also be

regarded as a composition of simple temporal constraints, which are used in simple

temporal networks (STNs) [101, and state constraints to describe state trajectories

over bounded time. The episode is similar to the time token used in the time map

management system 191.

Other similar representations include temporal planning networks (TPNs) [19, 23,

31, 81 and qualitative state plans (QSPs) [22, 17, 38, 24, 11], which are widely used

in many planners and executives. For example, tBurton [38] uses QSPs to describe a

set of temporally concurrent goals the system needs to achieve over time.

The state-of-the-art constraint-based scheduling solver is CP Optimizer that deals

with continuous time and introduces the notion of state functions to constrain the tra-

jectories of state variables over time [20, 211. Powered by advanced stochastic search

methods such as Large Neighborhood Search (LNS), CP Optimizer can efficiently

and iteratively improve the plan quality of complex scheduling problems. However,

CP Optimizer only models and solves problems with resource constraints over state

variables. As is the case for most scheduling methods, they lack richer constraints to

model complex systems.

In the field of decision-making, there are many successful solvers, such as Gecode

[16] for constraint programs, and Gurobi [30] for mixed integer and linear programs.

Episodic CSPs are as expressive as these programs. Since we naturally support the

44

notion of time, our framework provides more concise models and explicit dependency

structures to enable efficient solution.

4.2 Definitions

We give the formal definitions of Episodic CSPs as follows:

Definition 6. (Epiosodic CSP) An Episodic CSP is a tuple (EV, SV, TC, EP).

" EV is the set of events.

" SV is the set of state variables.

" TC is the set of temporal constraints.

" EP is the set of episodes.

In the rest of this thesis, we also abbreviate Episodic CSPs as episode satisfaction.

We use events to describe to time point, which is defined as follows:

Definition 7. (Event) An event is a real variable or an integer variable.

The temporal constraints specify the relations between events, which are defined

as follows:

Definition 8. (Temporal Constraint) A temporal constraint is a a tuple (e0, e, D),

where:

" e' and e are two events events.

* D is the duration constraint, and is given by a tuple (D,. D) such that D1 <
, Dsthduaincntanan sgv byatleD, D uhthtD

eA - e < Du.

We define the state variables and state trajectories as follows:

Definition 9. (State Variable) A state variable maps time t e R>0 to the values from

an associated domain.

45

Definition 10. (State Trajectory) A state trajectory of S over I maps t E I to an

assignment of S, where S is a vector of state variables and I is a continuous interval.

S and I are said to be the scope and the interval of this state trajectory.

Episodes are timed constraints over state variables that are defined as follows:

Definition 11. (Episode) An episode is a a tuple (eH, e, ,D, S, SC) , where:

" eH and eH are the start and end events of the episode.

" D is the duration constraint, and is given by a tuple (D1 , D,) such that D, <

eH - e< < Du.

" S is the scope, and is given by a set of state variables.

" SC is the state constraint that must hold during this episode.

To restrict the problems we are given, we restrict the considered state constraint

SC within two categories that can be expressed as a tuple (uniform, C) or (constant, C),

where C is a constraint as defined in CSP. We call the corresponding episodes uniform

episodes and constraint episode, which are defined as follows:

Definition 12. (Uniform Episode) A uniform episode applies the same constraint

to the scoped state variables at every time point between the start event and the end

event.

Definition 13. (Constant Episode) A constant episode is a uniform episode where

the assignments to the scoped state variables are constant between the start event and

the end event.

We use two examples to illustrate uniform episodes and constant episodes. That

the throughput x of a network flow should be larger than 100kbps during transfer can

be an episode with the state constraint (uniform, x > 100). If the throughput should

be constant for the sake of service stability, the state constraint will be (constant, x >

100).

We also add another special class of episodes, point episodes that describe a con-

straint over time points, which are defined as follows:

46

Definition 14. (Point Episode) A point episode is an episode whose start event and

end event are same. Let e = (be this event, and e be an enough small quantity, there

are three types of point constraints:

1. Left point constraint constrains the state trajectory during the interval [C -e,

2. Right point constraint constrains the state trajectory during the interval (, +6].

3. Point constraint constrains the state trajectory during the interval [(- e, + e].

A candidate solution of an Episodic CSP assigns all the events and state variables

over time, while a solution is a candidate that satisfies all the episodes, which is

defined as follows:

Definition 15. (Episodic CSP Solution) An Episodic CSP solution sol is a tuple

(s, st):

" s is a schedule that assigns every event with a value.

" st is a state trajectory of all the state variables from the earliest time to the

latest time of s.

* sol is said to be consistent if and only if all the episodes are satisfied. An

episodes is said to be satisfied if and only if the schedule of its start event and

end event satisfy its duration constraints, and the state trajectory satisfies its

state constraints.

4.3 Summary

In this chapter, we presented Episodic CSPs to model the decision-making problems

with state constraints over time. In the next chapter, we will introduce the architec-

ture of Amundsen, which translates the timed configuration management problems

into Episodic CSPS and then leverages an efficient solver to solve them.

47

48

Chapter 5

Amundsen: Timed Configuration

Manager

In this chapter, we introduce the timed configuration manager, Amundsen, which

takes as input a timed configuration management problem (TCMP) and generates a

control plan. First, we present the architecture of Amundsen consisting of a translator

from TCMPs to Episodic Constraint Satisfaction Problems (Episodic CSPs), and

a corresponding Episodic CSP Solver called Conflict-directed Episodic Satisfaction

(CDES). Then, we introduce the translator that compiles TCMPs to Episodic CSPs.

In this chapter, we only briefly describe CDES, and more details about CDES are

introduced in Chapter 6.

5.1 Amundsen Architecture

The architecture of Amundsen is given in Figure 5-1. Amundsen takes as input

a TCMP and generates a control plan. This TCMP includes a plant model of the

system being configured, the goal plan that specifies the desired behavior of the system

over time, and the initial state of the system. The output control plan is a temporal

plan whose activities are configurations, where a configuration is an assignment of

the control variables, such as the routes and bandwidth allocation. The examples of

plant models, state plans, and control plans can be found in Chapter 3 (Figure 3-1,

49

Figure 3-2, Figure 3-3, and Figure 3-4).

Goal Plan

Amundsen

PPlantilr Initial State

CDES

.Control PlanSolution Compiler PIant

Figure 5-1: Amundsen architecture.

To generate a control plan for a TCMP, Amundsen first compiles the TCMP into

an Episodic CSP, which is solved by an efficient Episodic CSP Solver called CDES.

While the plant model provides the constraints of a system under certain locations,

the goal plan specifies the locations of this system over time. Solving this problem

is equivalent to finding a set of trajectories of the control variables, such that all the

constraints under the desired partial states are satisfied. This problem is a constraint

satisfaction problem scoping on these control variables. Thus, we use Episodic CSPs

to capture the constraints extracted from the initial state, the plant model, and

the goal plan. CDES can efficiently solve Episodic CSPs with both discrete and

continuous variables.

CDES takes as input an Episodic CSP that is translated from a TCMP and

outputs an Episodic CSP in which events are totally ordered and state variables are

assigned over time. We implement CDES by extending OpSat [40] to an Episode

CSP solver and incorporating an enhanced ordering module from UnifyHistory [37],

which is also indicated by eOpSat. The output of CDES is a set of state trajectories

for all the state variables. The solution compiler only chooses the state trajectories

of the control variables and compile them into a control plan. Since this compilation

is trivial, we do not give the details in this thesis.

50

5.2 From TCMP to Episodic CSP

In this section, we present the plan compiler that takes as input a TCMP tcmp and

outputs an Episodic CSP ecsp that can be solved by an Episodic CSP solver.

As introduced in Chapter 3, a TCMP is tcmp = (M, GP, E), where M = (CS, FGC)

is a plant model. We create the corresponding Episodic CSP ecsp = (EV, SV, TC, EP)

by following these steps:

1. Events: The events EV are all the events in the goal plan GP, and we have

EV = EV(GP). We also denote the reference event eo E EV and the global

end event e, E EV, and they happen earliest or latest respectively.

2. State Variables: The state variables SV are the composition of the loca-

tion variable Li, state variables Xi, and exogenous variables U of every hybrid

automaton Si E CS, and we have SV = U SVi = U ({Li} U Xi U Ut).
S ECS S ECS

3. Temporal Constraints: The temporal constraints come from the temporal

constraint in the goal plan.

Then, we instantiate the episodes:

4.1 Episodes from Initial State: We add a point constraint over eo to capture

the information in the initial state . This point constraint is epo = (eo, C),

and C is a conjunction of a set of equality constraints over location variables

and state variables X:

(A(Li = l)) A (A(Xj = x"))
i i ~.7

where I? and Xf are the state specified by 0 at t = 0.

4.2 Episodes from Constraints Implied by Locations We also add a uniform

episode epo, 0 = (eo, eCo, (0, oc), (uniform, C)), with eo preceding every other

event and em succeeding every other event, to include the constraints implied by

location assignments. As the location constraint function FC of each automaton

51

Si E SC maps a location Li = lij to a constraint FFC(lij) over its variables Si,

we have Ci = Cjj and each Cij is represented as follows:

(Li = lij) -=> F (jj

Then, we complie out the implication:

(Li # lij) V Fc(l)

As for each automaton, we have the constraint Ci. The constraint C included

in.the episode is C = ACj.

4.3 Episodes from Goal Plan: Finally, we add all the episodes from the goal

plan to the Episodic CSP.

5.3 Summary

In this chapter, we presented a timed configuration manager for solving timed con-

figuration management Problems, which translates this problem to an Episodic CSP

and then solves this equivalent problem by using an Episodic CSP solver called CDES.

As the core of Amundsen, CDES leverages temporal dependency to decompose

Episodic CSPs, and then orders the events to further decompose the problem into

several parts that are handled by highly-optimized sub-solvers independently. The

algorithmic details of CDES are introduced in the next chapter.

52

Chapter 6

CDES: Conflict-directed Episodic

Satisfaction

In this chapter, we present a fast conflict-directed algorithm for episode satisfaction,

Conflict-directed Episodic Satisfaction (CDES) (Figure 6-1). CDES is comprised

of a decomposition method followed by three interacting modules: Conflict-directed

Incremental Total Ordering (CDITO), Incremental Temporal Consistency (ITC), and

Incremental State Consistency (ISC). We first introduce the decomposition module

that takes as input an Episodic CSP and outputs a set of Episodic CSPs that can be

solved independently (Section 6.3). Then, each Episodic CSP will be totally ordered

by CDITO in a generate-and-test fashion that incrementally changes a small portion

of the previous generated total order in a new generation until a total order under

which a solution exists is found. We briefly introduce the properties of CDITO

in Section 6.4, and the algorithmic details are given in Chapter 7. Given a total

order provided by CDITO, the temporal consistency and state consistency of the

ordered plan will be incrementally checked by ITC (Section 6.5) and ISC (Section 6.6),

respectively.

53

6.1 Related Work

Our approach is built on UnifyHistory that is used in tBurton [371 to unify multiple

timelines. UnifyHistory is a hybrid algorithm with a master and a pair of sub-solvers.

The master is Incremental Total Order (ITO) that generates candidate orderings of

episode events. The first sub-solver is ITC that is used to check the temporal con-

sistency of the candidate order, while the second sub-solver searches for a candidate

assignment to state variables that is consistent with the candidate ordering.

CDES uses the exact same framework as UnifyHistory. We add a decomposition

module that is able to decompose an Episodic CSP into several independent sub-

problems. We improve ITO by considering the conflicts discovered by the sub-solvers

such that the ordering generation can be guided and more efficient.

We also use ITC to check the temporal consistency of a total order. As Unify-

History searches a candidate assignment of finite-domain state variables, we uses the

module ISC that extends OpSat [40] to handle mixed continuous-discrete state vari-

ables to find the candidate assignment. To improve the efficiency, ISC decomposes

the ordered problem to a set of CSPs and only checks a subset of these CSPs that

are most important to the consistency. As many total orders are generated by the

master in sequence, ISC is also incremental, which only checks the CSPs that have

been changed with respect to the previous orders.

6.2 CDES Algorithm

As described in Algorithm 1, the approach starts with an initial total order L of all the

events EV that is consistent with respect to partial orders 4D (Line 6). Then, CDES

invokes CDITO to generate consistent total orders (Line 10) whose corresponding

temporal consistency and state consistency are incrementally checked by TC and

TSC, respectively.

Algorithm 1 is called with an Episodic CSP. Following decomposition, CDES infers

a partial ordering on events of an Episodic CSP, which is similar to UnifyHistory. It

54

Episodic CSP

CDES
I--------- -- I-------

L.

V

Decomposition

ECSPs

CDITO

ordered ECSPs conflicts

ITC & ISC

solutions for Episodic CSPs I

Merge

Episodic CSP solution

Figure 6-1: Conflict-directed Episodic Satisfaction (CDES) architecture.

accomplishes this by inferring all implicit temporal constraints from the STN stin

of the Episodic CSP and extracting partial orders from the implied STN (Line 4).

The implied STN is inferred by computing All-Pairs Shortest Paths (APSP) on the

distance graph of the STN [101 . Each implied simple temporal constraint implies a

partial order when its lower bound is positive.

Then, the generator of candidate orderings is initialized before moving to the main

candidate generation loop. The initialization involves the total order , the temporal

consistency algorithm iTC, the state consistency algorithm ISC, and the search state

P. A total order L of all the events is initialized that is consistent with respect to

4P. For simplicity and without loss of generality, we refer to events by indices from 1

to n, thus the first C, is (1, 2, ... , n), where n is the number of events.1 With stn and

L, we initialize ITC ITC by adding a temporal constraint (0, +oo) to stn for every

pair of partial orders implied by Z (Line 7). Line 8 initializes ISC ISC under 4,. We

'In other total order L = (pl,P2, --,Pn), Px = y means y is the event index or event, and x is the

position of y.

55

Algorithm 1: CDES
Input: an Episodic CSP instance ecsp = (EV, SV, EP)

Output: an ordered and constrained Episodic CSP or {}
1 P = {p1 , p 2 , ..} <- Decompose(ecsp)
2 for pi G P do
3 n +- the number of events in EV;
4 stn - EV and duration constraints in pi;
5 D +- all partial orders in APSP(stn)

// C = (pI, p2, --- , Pn)
6 LC +- (1, 2, ... , n) ;
7 ITC <- initialize ITC with stin and L,;
8 ISC <- initialize ISC with pi and L,;

9 P +- [(n, 1, 1)] ;
10 Li +- CDITO(4,, P, (P, (TC o ISC));
11 soli <- Ground(pi, Li, (ZTC o ISC))

12 sol <- merge({soli, s012, -})
13 return sol

compute the solution under a consistent total order (Line 11) for each decomposed

problem then merge all the solutions together for the original problem (Line 12).

Algorithm 1 is identical to UnifyHistory except that we add a decomposition mod-

ule and improve the ordering generation and the state consistency check algorithm.

6.3 Decomposition

To accelerate the solution procedure, we provide a decomposition method that ex-

ploits the temporal structure and outputs decomposed problems. Rather than rea-

soning over the whole problem, decomposing an Episodic CSP into several small

problems that can be solved independently is much more efficient.

The decomposition is to divide an Episodic CSP into two Episodic CSPs by an

event called the breakpoint. The breakpoint must precede some events and succeed

the other events. A breakpoint in Figure 6-2 is the event E5, and its partial orders

with other events are given in Figure 6-3. We also require that no temporal con-

straints or state constraints are cross the divided problems, such that these problems

can be solved independently in terms of the schedule of events and the state vari-

56

able assignment. An example of the corresponding decomposition by E5 is given in

Figure 6-4.

The first step of the decomposition is to translate the STN of an Episodic CSP

into a distance graph and apply All-Pairs Shortest Path (APSP) to this distance

graph to expose the implicit temporal constraint between every pair of events [101.

This procedure is the same as initializing the partial orders of the problem. Then, a

Directed Acyclic Graph (DAG) is constructed by colleting all these events and partial

orders .

0 Event --- > Uniform Episode

- > Temporal Constraint -- - Constant Episode

[120, 120] (0, so)

Ep3-------7-- Ep4
E4 E7

[15 0) 60, 601]9U 0)[60, 751]O c
[1,o)Epl Ep2 '

El E2 E3 ES E6

Figure 6-2: Am Episodic CSP example with 7 events, 3 temporal constraints, 2
uniform episodes and 2 constant episodes.

El
E4 E7

E:2

E3 E5 E6

Figure 6-3: The DAG of the example with only the edges starting or ending at the
candidate breakpoint E5.

Based on this graph, an event that precedes a set of events and succeeds the rest

of the events will be found as the candidate breakpoint for the decomposition, which

is the necessary condition of decomposition. Event E5 is the candidate breakpoint

as shown in Figure 6-3 for an example given in Figure 6-2. We keep searching these

candidate events until all candidates are exhausted or we find a candidate event whose

preceded events and succeeded events have no connection. Specifically, no connection

57

[120, 120] (0,) (0,)

Ep3 r EEp4

E4 E7

[60, 601 [60, 751
L[15, -) Epl Ep (0, -)

El E2 E3 ES E6

Figure 6-4: Decomposition example with E5 as the breakpoint.

equals the conjunction of two conditions:

1 No constant episode is across these two event sets. This is necessary since

constant episodes will force state variables to be assigned with the same value

across the decomposed problems.

2 No temporal constraint is across these two event sets, in the Minimal Dispatch-

able Network form of the STN [28]. Minimal Dispatchable Network is equivalent

to the original STN but removing all the redundant constraints.

Finally, the STN is divided into two STNs concerning the breakpoint, and the episodes

in the original Episodic CSP are projected to each STN. As constant episodes are

guaranteed to not cross two STNs, we decompose a uniform episodes that is cross

two networks by cutting two episodes into two episodes connected to the breakpoint,

as shown in Figure 6-4. The example (Figure 6-2) can be divided into two Episodic

CSPs given in Figure 6-4.

6.4 CDITO: Conflict-directed Incremental Total Or-

dering

The core of CDES is CDITO, which systematically and incrementally explores all the

total orders of the events in an Episodic CSP such that temporal consistency and

state consistency can be checked independently. We briefly introduce the properties

of CDITO in this section and more details can be found in Chapter 7.

58

CDITO starts with a total of all the events and keeps generating new total orders

until reaching a total order under which a consistent plan can be found. For each

generation, the new total order is associated with an order change that is a sequence

of order moves from the previous total order to the current total order. Consider

generating total orders of four events 1, 2, 3, 4. While the previous total order is 1234

and the current total order is 1324, the order change is [(2 -+ 3), (3 -+ 4)], which

means 1324 is created from 1234 by moving the 3 th event after the 4 th event and then

2 tg after the 3 th event. This ability to output order changes enables ITC and ISC

to incrementally check the consistency and avoid unnecessary consistency checking,

which is important to the efficiency in solving time.

Another feature of CDITO is that it can interact with ITC and ISC through or-

dering conflicts that are conflicting partial orders extracted by ITC and ISC from

discovered inconsistency along the solving procedure. By leveraging these ordering

conflicts, CDITO achieves great efficiency by avoiding generating total orders with

similar inconsistency. The method to extract ordering conflicts is introduced Sec-

tion ??.

6.5 ITC: Incremental Temporal Consistency

Each candidate order needs to be checked for consistency against the STN of the

Episodice CSP. This is performed by using the ITC algorithm, which is the same

as UnifyHistory to check the temporal consistency of an ordered STN 1371. ITC is

capable of updating the previous STN with incremental or decremental changes and

continuing the consistency checking, and the algorithmic details of ITC is given in

[321.

Extracting Ordering Conflicts from Temporal Inconsistency

When ITC detects some temporal constraints are conflicting, it is able to summarize

the inconsistency as ordering conflicts and return them to the CDITO algorithm. In

sake of time efficiency, we add this module upon ITC to to avoid similar inconsistency

59

in the future generations.

As we formally model the temporal requirements as a STN, a total order on the

events in the network is equivalent to imposing temporal constraints (0, oc) on every

pair of events whose precedence relation is specified by this total order. As these

imposed constraints tighten the network, temporal inconsistency may be introduced.

In the distance graph form of this network, a temporal consistency checking algo-

rithm is able to detect negative cycles that are composed of inconsistent temporal

constraints. Given a negative cycle, we use a partial order Rf = x- -< x+ to represent

every temporal constraint that is added because of total ordering and involved in the

cycle. The ordering conflict c' is used to represent this negative cycle as follows:

ct = ARt = A(xT -< xt). (6.1)

6.6 ISC: Incremental State Consistency

If an ordered Episodic CSP is temporally consistent, the final step is to check its

state consistency. As mentioned in the previous sections, we already decompose the

temporal constraints and the state constraints of the Episodic CSP by ordering the

events. When it comes to checking the state consistency, the approach of considering

the ordered Episodic CSP as a single CSP is complete but inefficient. Plus, it is

unsound to check the state constraints of every stage between adjacent event pairs

separately because of the presence of the constant episodes. Because these constant

episodes force their scoped state variables to keep constant during their stages and

results in the interaction between stages.

Instead of considering the ordered Episodic CSP as a single CSP, we decompose

it into several CSPs. In contrast to the constant episodes, the uniform episodes does

not pose constraining effects across stages. Thus, when two stages are not constrained

by the same constant episodes, their consistency can be checked, respectively. For

example, in Figure 6-5(a) and Figure 6-5(c), each stage can be considered indepen-

dently. However, in Figure 6-5(b), the stage between E2 and E3 need to be checked

together because they are covered by the same constant episode Epl.

60

S S E SE E

El E2 E3 E4 E5

-- -- --- [-------------- r ------
1 iEp3 Ep4

Epl

(a) Total order El, E2, E3, E4, E5

S S SE E E
El E2 E4 E3 E5

r -- - - --- -- -------I -- --- ---- -- --
L. Ep3 Eptf

Epl

0-- -
(b) Total order El, E2, E4, E3, E5

S SE S E E

El E4 E2 E3 E5

r----------------- -I------- - ------

L Ep3 1,Ep4' _

EpI

(c) Total order El, E4, E2, E3, E5

Figure 6-5: Main Components (MCs) of ordered Episodic CSPs.

To efficiently check state consistency, we only check the state consistency of part

of the stages that are most critical to the consistency of the problem. Note that state

constraints in one stage can be a superset of state constraints in other stages. In

this case, the consistency of the superset stage implies the consistency of its subset

stages, and a problem is compacted by only including superset stages but still being

sound. For example, in Figure 6-5(a), the stage between E2 and E3 contains all the

state constraints of its neighbors, and thus its two neighbors are pruned, and only the

marked stages are considered. We call a set of connected superset stages as a Main

Component (MC).

To introduce how to extract an MC (i.e., a set of connected superset stages), we

first label the events according to whether they start or end episodes. There are three

labels: S means the event starts some episode (e.g., E2); E means the event ends

some episode (e.g., E3); an SE event start some episode and end other episodes (e.g.,

E4); We do not consider events neither starting or ending any event since they are

61

Table 6.1: Order change effects to Main Components (MCs).
MC Relaxed MC Tightened

S ++E E +*S
S - SE SE + S
SE -* E E + SE

No Change MC Changed
S _ _S SE + SE
E E

not involved in checking state consistency. The algorithm to extract MCs starts from

the earliest event and ends when reaching the latest event.

As CDITO searches total orders by moving an event after another event, we can

improve the state consistency checking efficiency by analyzing these moves. As shown

in Table 6.1, the moves between different events can relax, tighten, change (i.e., the

effects are unknown) or make no change to the state constraints of an MC. For a new

total order, ISC only needs to check two kinds of MCs:

1 MCs that were inconsistent in the previous total order but have been relaxed

and changed by the current total order.

2 MCs that were consistent in the previous total order but have been tightened

and changed by the current total order.

If there is one inconsistent MC, the total order is inconsistent. By using main com-

ponents and incrementally check the changed MCs, ISC is able to quickly determine

the state consistency of an ordered Episodic CSP.

Extracting Ordering Conflicts from State Inconsistency

Now we introduce how to extract ordering conflicts from state inconsistency with are

inconsistent overlap. Consider an example where two episodes EP1 and EP2 cannot

overlap. As EP1 starts at 1 and ends at 5, and EP2 starts at 2 and ends at 4, this

ordering conflict can be represented as c5 = (1 -< 4) A (2 -< 5)m where (a -< b) means

a should precede b. This conflict compactly captures all the combinations of this

62

overlap: 1254, 1245, 2154, and 2145, which means the start events of these episodes

happen before the end events.

We represent the ordering conflict of the overlap between two episodes as a con-

junction of two partial orders: R = (xk -< ') A (x' -< x), where i and j are the

indices of these two episodes; xi and x. are the start events; xi and xi are the end

events. When multiple episodes overlap, the ordering conflict c' is as follows:

C= A Rs = A (x -< Xl). (6.2)

where each R - represents the overlap of two episodes.

Assume that m episodes overlap with each other, Equation 6.2 can capture this

overlap with a conjunction of rn(m - 1) partial orders. In every total order featuring

this overlap, if we halve the involved events into two groups with respect to this total

order, all the start events are in the first group, and all the end events are in the

second group. Thus, this overlap can be described by specifying all the precedence

relations between start events and end events while it can happen in at least (M!) 2

total orders.

6.7 Summary

In this chapter, we present CDES, an Episodic CSP solver that consists of a decom-

position module and an ordering method called CDITO followed by two sub-solvers

ITC and ISC that check the state and temporal consistency of the ordered problem,

respectively. In addition to efficiently decomposing the problems, CDES is able to

leverage ordering conflicts from the sub-solvers to manipulate the total orders of the

events and then incrementally checks the consistency of the changed parts.

We have introduced the details of all these four modules except CDITO. We

discuss the algorithmic details of CDITO in this next chapter.

63

64

Chapter 7

CDITO: Conflict-directed

Incremental Total Ordering

In this chapter, we address the ordering problem that decides the execution order of

events in Episodic CSPs. By total ordering the events, we can decompose the temporal

and state constraints of Episodic CSPs and solve them independently. For example,

when two network flows represented as episodes are competing over the bandwidth

resource on a communication link, and their starts and ends are not ordered, they

can be routed to different links or scheduled to different times to avoid conflicts. This

is a joint decision over states such as routing and time such as schedules. If the flows

are ordered, then we know they are overlapped or disjoint over the timeline. Based

on the ordering, we can decide their routes between adjeacent events although the

exact schedule is unknown. Meanwhile, the schedule only needs to be consistent with

the temporal constraints and the imposed orderings.

As a total order is decided first for decomposition, finding a consistent total or-

der under which a solution exists is central to solving Episodic CSPs. However, the

ordering problem with complex underlying constraints is NP-hard, and the solution

space is factorial in the event number. To efficiently generate such a consistent to-

tal order, we use an ordering algorithm called Conflict-directed Incremental Total

Ordering (CDITO). This algorithm incrementally and systematically generates total

orders by applying conflict-directed search in a special tree structure of total orders.

65

CDITO is built upon Incremental Total Ordering (ITO) that is used in the tBurton

planner [371. CDITO extends ITO with conflict-directed search [40 to leverage the

ordering conflicts, Since CDITO is enhanced to handle disjunctive partial orders, it

can leverage the ordering conflicts from both the ordering relations and sub-solvers.

Both CDITO and ITO use the same tree structure for arranging total orders, which

was first introduced by [291.

We begin by introducing a motivating example that will be used to illustrate the

algorithmic details of CDITO. In Section 7.1, we give the formal definition of our

ordering problem. We also formulate the motivating example as an ordering problem

in this section. Then, we review the related work that inspires CDITO in Section 7.2.

As a background, we introduce the total order tree and a search strategy within this

tree in Section 7.3 and Section 7.4, respectively. We also present the definitions of

ordering conflicts and the method to extract ordering conflicts in Section 7.5 . The

method to resolve ordering conflicts in introduced Section ??. Then, we introduce

the method to obtain a resolving move that resolves ordering conflicts and considers

the search state in Section 7.7. In Section 7.8, the algorithmic details of CDITO are

introduced, and we focus on how to apply a resolving move to the total order search.

We end the chapter by introducing a method to relax strictly-ordered total orders

generated by CDITO to non-strict orderings in Section 7.9.

First, we present a motivating example in Figure 7-1. This problem is an Episodic

CSP with five events, three episodes, and five temporal constraints, three bounding

the duration of the three episodes, and two relating different episodes. Each episode

specifies a network request. Because determining whether multiple network flows can

overlap in our motivating example is equivalent to routing them with the constraints

of bandwidth, loss and delay, which is NP-hard, we assume it is computationally

expensive to check the consistency of the overlaps between episodes. We also assume

that all these episodes can overlap with each other except EP1 and EP3. In addition,

there is an ordering constraint that forces E3 or E4 to precede El, and we denote it

as two temporal constraints (0, oo) with a circular are between them.

There is only one consistent total order {E2, E4, El, E3, E5} for the events under

66

(0, 70]

30,-9 '601 4 _ ____[_30, 601

Ep2 3

Figure 7-1: Ordering problem example as an Episodic CSP.

which a consistent solution exists. Given the temporal constraints, we know EP1 has

to overlap with either EP2 or EP3. Since EPl and EP3 cannot overlap, El should

precede E3 and thus succeed E4. Therefore, there exists one and only one consistent

total order that is given in Figure 7-1.

As episodes represent network flow requests, this problem involves routing and

resource allocation concerning multiple characteristics as shown in Section 1.1, which

is already NP-hard and computationally expensive to check the consistency. Solving

this problem is even more complex since we need to make these decisions over time.

We will show that our method can efficiently find this consistent total order by lever-

aging the ordering information extracted from the state and temporal requirements

on demand, and the conflicts discovered during the search.

7.1 Problem Formulation

In this section, we introduce the definitions of the ordering problem and give an order-

ing problem instance of the motivating example in Figure 7-1. We also introduce the

definitions of the consistency checking function and the conflict extraction function,

which CDITO takes as input along with an ordering problem.

Ordering Problem

The ordering problem is defined as follows:

Definition 16 (Ordering Problem). An ordering problem is a triple (e , wI):

67

* E is a set of n events represented by the natural numbers {1, 2, .., n}.

* D is an ordering relation represented by a set of clauses whose disjuncts are

partial orders. Each partial order (a -< b) constrains a E E to precede b E E.

* H is a set of constraints over total orders L of E, where a total order of E is

an order sequence of the elements of E.

A candidate solution of this ordering problem is a total order of E. L is a solution

if and only if L satisfies both P and H. Note that total orders of events E are

subject to not only disjunctive partial orders 4) but also additional constraints H.

Constraints H should hold but are difficult to formulate as disjunctive partial orders,

such as metric temporal constraints and consistency of overlaps in the motivating

example.

The motivating example can be formulated as follows:

" E = {1, 2,3,4,5} = {E1, E2, E3, E4, E5} as shown in Figure 7-1.

" (= {f91, 92, V3, (4}, where V = 1 -< 5, P2 = 2 -< 3, and V3 = 2 -< 4 constrain

each episode's start to precede its end, and V4 = (3 -< 1) V (4 -< 1) captures the

disjunctive ordering constraint.

" H = {Ir1 , r2 }, where constraint 7r, represent the state constraints, and constraint

7r2 represent the metric temporal constraints.

Consistency Checking Functions

CDITO also takes as input a set of consistency checking functions F. For each

constraint 7r that scopes on total orders L and the constraint 7r, we associate 7r with a

consistency checking function f. If L is consistency with ir, f(L, 7r) = T; otherwise,

f(L) = I.

For the ordering problem of the motivating example, we have two consistency

functions F = {fi, f2}: fi is the CP solver in [5] to check the state consistency of

overlaps. In this example, the CP solver only returns I when EP1 and EP3 overlap;

68

we use Incremental Temporal Consistency [32] as fi to check the temporal consistency

of a total order with respect to the temporal constraints. In the motivating example,

if both of the events 3 and 4 are before 1, the problem is temporally inconsistent since

the duration between 2 and 5 would be at least 80, which exceeds its upper bound

70. This inconsistency is summarized as an ordering con

Conflict Extraction Function

In addition to the consistency checking functions, We also associate each constraint

7r c I with a conflict extraction function h that maps a total order and the constraint

7r to a set of ordering conflicts if f(L, r) = _L, where f is the consistency checking

function of r. The definition of ordering conflicts is given in Section 7.5

For the the motivating example, we have two conflict extraction functions H =

{hi, h2 } for state inconsistency and temporal inconsistency, which are introduce in

Section 6.6 and Section 6.5, respectively.

Along the search, two ordering conflicts c5 and c6 will be extracted from temporal

and state inconsistency, respectively, where c5 {(1 -< 4), (2 -< 5)} and c6 = {(I -_

3), (1 -< 4)}. The methods to extract ordering conflicts from temporal and state

inconsistency are introduced in Section 6.5 and Section 6.6, respectively.

7.2 Related Work

Our solution approach CDITO is built upon the idea of searching the total order

tree introduced in [29]. In this tree, total orders are arranged in a specific structure

such that some subtrees can be pruned concerning violated partial orders. As [29]

generates all total orders in parallel, ITO modifies it to generate one total order at a

time on demand [38, 37]. ITO is used in tBurton to unify multiple timelines [38, 371

and can solve our ordering problem. CDITO extends ITO with a conflict extraction

and pruning algorithm in the spirit of the conflict-directed search for satisfiability but

tailored to the unique properties of the total order tree.

For total orders found to be inconsistent, we may reason over which partial orders

69

led to this inconsistency. As we are working over a total order tree, we may leverage

the insights of [401 to focus our search by pruning the search space that has similar

inconsistency. In addition to common conflict-directed search techniques, CDITO

leverages the special structure of the total order tree to jump to promising candidate

orderings quickly. However, applying conflict-directed search to this total order tree

is not intuitive since the operations of resolving conflicts might be restricted within

this tree. We use the same idea of [401 to compute the resolving move of multiple

conflicts but apply the resolving move by considering the properties of this tree.

7.3 Total Order Tree

We begin by reviewing the ordering tree and its construction, first introduced in [291.

While the ideas of this tree structure and the notion of the level was first introduced

by [29], we add the notion of order moves and pseudo moves for the convenience of

describing CDITO.

We first intorude the total order tree. In the total order tree of E = {1, 2, .., n},

each node is a total order of E, and each edge is an operation of altering partial

orders of total orders. Rooted at L, = (1,2,..,n), the tree is constructed by iteratively

expanding all the children of each total order. An example of the tree of four events

are givin in Figure 7-2. The tree expansion uses the notion of total order level that

is defined by Ono:

Definition. (Level) Given a root total order L, the level of a total order L =

(PI, P2, .. , Pn) # L, is the minimum index 1 such that p, 7 1. The level of L, is n.

One example of a level is that the second element in 1324 is not 2, which is the

first index from the left whose element is not in the right place, such that the level

of 1324 is 2. Another example is that the level of 4321 is 1.

To generate a child of a total order L = (P1, P2, .., ps), Ono deletes pi = i from L

and then inserts it in somewhere (pi+1, Pi+2, .. , pn). In this paper, we formally define

this operation of moving an event within a total order as an order move:

70

Definition. (Order Move) An order move (i -+ j) deletes pi from a total order

12= (pI, p2, .. ,pn) and inserts it right after p to obtain a total order L', where i < n

and j < n. This operation is denoted as 1' = C e (i - j).

One example of an order move is that for order move (1 - 3), 1234 E (2 -+ 3)

1324. Another example is that 4321 D (2 -- 4) = 4213.

As each edge in the tree is an order move from a parent to its child, only a subset

of order moves is included in the tree. Thus, we have the notion of a feasible move,

which is defined as follows:

Definition. (Feasible Move) Let L be a total order with level 1, an order move (i)

from 1 is a feasible move if and only if i < 1 and i <j.

Basically, a feasible move (i -+ j) from L with level 1 should satisfy two conditions:

(1) i < 1: a feasible move should only move an event that is less than 1. For example,

(2 -+ 3) is a feasible move for 1234 whose level is 4, but an infeasible move for

4321 whose level is 1; (2) i < j: this move should only right shift an event. For

example, (2 -+ 3) is feasible move, but (3 -+ 2) is infeasible. The total order tree of

E = {1, 2, 3, 4} is given as an example in Figure 7-2, which gives are the total orders

of E and all the feasible moves.

In addition to feasible moves, we also define the pseudo move that moves from a

total order to a sibling with the same level. Although these pseudo moves are not

feasible edges in the total order tree, they can be resolving moves that are resolving

order moves in CDITO, which will be seen in Section 7.8. The pseudo moves are

defined as follows:

Definition. (Pseudo Move) Let C2 (p1,p2, ..,pn) be a total order with level 1, an

order move (i -) from 1 is a pseudo move if and only if pi = 1 and i < j.

As we can see, the difference between feasible moves and pseudo moves are that

while the former moves the event with indices less than level l, the latter only moves

the event 1. An example of pseudo move is that (2 -i 4) is an pseudo move from 2134

and moves to the sibling 2341.

71

Following Definition 7.3, we have Proposition 1, which says a pseudo move always

moves an event with an index larger than its level.

Proposition 1. If an order move (i -+ j) is a pseudo move from a total order L, we

have i > 1.

Proposition 1 holds because if a total order has level 1, the event 1 has been

right shifted, and thus its index will be larger than 1. Therefore, every pseudo move

(i - j) has (i > 1). As we will use pseudo move to update the search state in CDITO,

Proposition 1 is important to distinguish pseudo moves from other moves.

As the total order tree constrains feasible moves with respect to the total order's

level and moving directions, an important property of this tree can be obtained as

Lemma 1.

Lemma 1. For a total order with level 1, the subsequence of events {l, 1 + 1, .. , n}

remain in its descendants.

Proof. Since child generation does not allow moving events that are larger than the

parent's level, {l, 1 + 1, .. , n} are not moved, and the subsequence of {l, 1 + 1, .. , n}

remains in this total order's children. Given that all descendants' levels are less than

1, the subsequence of the events {l, 1+1, .. , n} remain in the descendants of this total

order as well.

Lemma 1 gives the partial orders that remain in a subtree of a total order, such

that CDITO can prune a subtree when these partial orders are inconsistent. By

using Figure 7-2, one example of Lemma 1 is that 1243 has level 3, and thus all its

descendants have the partial order 43 since both 3 and 4 are no less than 3.

7.4 Total Order Search

Next, we introduce the search strategy within this total order tree. Our search strat-

egy is depth-first search, which is different from the breadth-first search order used

in [29]. We explore the tree in the same order as ITO [37]. However, while ITO

72

1234

2134 2314 2341 1324 1342 1243

3124 3214 3241 3142 3412 3421 2143 2413 2431 1423 1432

4123 4213 4231 4132 4312 4321

Figure 7-2: Total order tree of E {1, 2, 3, 4}. The nodes are total orders; the edges
are order moves; the levels of total orders are blue.

uses a queue to store the next several order moves for both children expansion and

backtrack, we use a stack of search states to record which children can be explored

from the current total order. Thus, we know which children can be visited to resolves

conflicts, which makes our search strategy easier to be extended to a conflict-directed

algorithm.

The search follows these three rules: (1) children are visited before siblings, which

means our strategy is a depth-first search. For example, in Figure 7-2, after 1324 is

visited, the search visits its child 3124 instead of its sibling 1342; (2) the algorithm

backtracks when the children of the current total order are exhausted, or if the current

node is a leaf node. For example, after the search visits 3421, it backtracks to 1342;

(3) from a total order, the group of children with the lowest level i is generated first,

and within a group, children are generated by right shifting i until the right end. For

example, the children of 1243 are visited in the order of 2143, 2413, 2431, 1423, and

1432, and the corresponding order moves are (1 -+ 2), (1 -+ 3), (1 -+ 4), (2 -4 3),

and (2 -+ 4). Rule (3) is also given in Lemma 2

Lemma 2. Let (i a j) and (i' - j') be different feasible moves from a total order,

(i - j) is applied first if (ni + j) < (ni' + j'); otherwise, (i' a y') is applied first. If

(i - j) is applied first, we say (i - j) is before (i' - j'), or (i' - j') is after (i 4 j).

Total Order Search (Algorithm 2) takes as input the number of events n =E

73

Algorithm 2: Total Order Search
Input: n
Output: 0

1 L <-(1, 2, ..., In);
2 0 - [C] ;
3 P -[(1, 1, n)]
4 while P # {} do
5 (i, j, l) +- P[1]
6 if j < n then

7 1 (it, jt) +- (i, j + 1)
8 else if j= n then

9 L (it,jt) +- (i +1, i+2)

10 if it < 1 then
11 [1 <-(it, jt, 1)
12 'C <- ' E) (it jt) ;
13 push L to 0;
14 push (i,1, it) to P ;
15 else if it = 1 then
16 pop P;
17 if P 4 {} then
18 (i', j', 1') <-- -P[1];
19 L <- L ((j' + (i' - 1));

20 return 0

and outputs all the total orders 0 by following the aforementioned three rules. In

Total Order Search, we use the search state (i, j, 1) of a total order C to compute the

next move, where (i - j) records the last applied order move from L, and 1 is the

level of C. Note that we can know the feasible children from level 1 and unexplored

children from the last order move (i -+ j). Thus, the children to which can move

are determine by its search state. We use a stack P to store all the search states from

the root total order to the current total order. We initialize P with [(1, 1, n)] for the

root total order, which means no order move has been performed for the root total

order and its level is n (Line 3). An example of search state in Figure 7-2 is that,

after the search visits 2431 and backtracks to 1243, the search state of 1243 and 1234

are (1, 4, 3) and (3, 4, 4) respectively. Thus, we have P = [(1, 4, 3), (3, 4, 4)]. Note that

P[1] is the search state of the current total order. To generate a child, our algorithm

reads (i, j, 1) from P (Line 5) and computes the next order move (it - jt) (Lines 6-

74

9). If it < 1, we apply this order move to obtain a child (Lines 11-14), otherwise the

search backtracks (Lines 16-19). Lines 6-9 enforce the feasible moves from a total

order L to be sorted in the ascending order of (ni + j), which follows Lemma 2.

7.5 Conflict Extraction

In this section, we introduce the definition of ordering conflicts, which follows the

naming convention of conflicts in [401.

As a total order is equivalent to a set of partial orders or a conjunction of partial

orders, an ordering conflict is a subset of these partial orders that are inconsistent

with respect to ordering relation 4b or constraint Il. Formally we define the ordering

conflict as follows:

Definition 17 (Ordering Conflict). An ordering conflict c of an ordering relation #

is a conjunction of partial orders that is inconsistent with $.

For example, c4 - (1 --< 3) A (1 -< 4) is inconsistent with clause 04 = (3 -

1) V (4 - 1), and thus c4 is an ordering conflict of p4. Another example is that

C5 = (1 - 4) A (2 -< 5) is inconsistent with respect to the state constraint 7r, so that c5

is an ordering conflict of 7r1 . Note that we also treat constraints as ordering relations

when discussing conflicts. While a total order is determined toe be inconsistent by a

corresponding consistency checking function, the ordering conflicts are extracted by

the corresponding conflict extraction function.

Definition 18 (Minimal Ordering Conflict). A minimal ordering conflict of an or-

dering relation 0 is an ordering conflict of 0, no proper subset of which is an ordering

conflict.

An illustrated example of a minimal ordering conflict is that c4 is the minimal

ordering conflict of y4. However, (1 -< 3) A (1 -< 4) A (1 -< 5) is not the minimal

conflict of y'4 since its subset c 4 is an ordering conflict of Wp4. We also assume the

ordering conflicts returned by a conflict extraction function is minimal.

75

Definition 19 (State Ordering Conflict). Let a be a set of partial orders, a manifests

c if c C a; otherwise, a resolves c. If a manifests c, then c is called a state conflict of

a. For convenience, if an order move (i n j) moves a total order L to another total

order that manifests c, we say (i -+ j) manifests c at L; otherwise, (i j i) resolves

c at L.

While total order 12345 manifests c4 , 23145 resolves c4 since (1 -< 3) is not a

partial order included in 23145. While 12345 manifests c5 , and c5 is a state conflict

of 12345, 23415 resolves c5 since it is not a superset of c5 .

Now we show how to extract minimal ordering conflicts. Recall that a total order

L of E is equivalent to a set of partial orders for each pair events in E, thus it is a

full assignment as in the state space search. Given the ordering relation <P for our

ordering problem, each ordering relation (p E <D is a disjunction of partial orders, and

L is inconsistent with p if and only if L is inconsistent with all disjuncts of p. Thus, if

p is violated, we collect all the negations of its disjuncts as an ordering conflict. This

ordering conflict is minimal since by removing any of its conjunct, 0 is satisfied. The

methods to extract ordering conflicts from constraints such as temporal constraints

and state constraints are introduced in Section 6.5 and Section 6.6, respectively.

7.6 Conflict Resolution

In this section, we present the method to resolve ordering conflicts. We begin by intro-

ducing the definitions of resolving moves. Then, we introduce the method to compute

first resolving moves of both a single conflict and multiple conflicts. A resolving move

jumps to a total order or a subtree such that inconsistent total orders are skipped.

Among all the resolving moves, we mainly discuss about the first resolving moves.

By first, we refer to the order of applying moves in Lemma 2. All the examples used

in this section can be found in Figure 7-3. The definition of the resolving move is as

follows:

Definition 20 (Resolving Move). Let L be total order with level 1, and C is a set of

ordering conflicts, a resolving move (i -+ j) is a feasible move or a pseudo move such

76

that it moves to a total order that resolves c or a subtree in which a total order that

resolves c exists. We say (i -+ j) is the first resolving move if any other resolving

move is after (i -

Then, we discuss the resolving moves for both single conflicts and multiple con-

flicts.

7.6.1 Single-Conflict Resolving Move

We first show an example of a resolving move of a single conflict. Consider the

root total order 12345 with level 5 in our motivating example. This total order

violates the clause <p4 =(3 -< 1) V (4 -< 1), and the corresponding ordering conflict is

C4 = (1 -< 3) A (1 -< 4). In order to resolve c4 , the next generated total order should

include partial order (3 -< 1) or (4 -4 1). Therefore, order moves (1 - 3), (1 -+ 4),

and (1 - 5) are the resolving moves of c 4 from 12345. Recall that an order move

(i -+ j) with smaller (ni + j) is applied first by Lemma 2, and the first resolving

move is (1 -+ 3) that moves to 23145. As we can see, the first resolving move of

an ordering conflict c can directly move to a total order that resolves c. Because as

ordering conflicts is a conjunction of partial orders, an order move that negates any

of its partial order is an resolving move, which does not require a sequence of moves

to resolve.

For the sake of completeness, the search only applies the first resolving move even

if the the subsequent moves (1 -+ 4) and (1 - 5) can also resolve c 4 . Consider an

example of sacrificing completeness by taking order moves coming after (1 -4 3). If

we choose an order move that comes after (1 -* 3) such as (1 -+ 5), we will skip

the candidate solution 23145. By taking (1 -÷ 3), we can still reach 23145 by taking

(1 -+ 4) as the next order move.

Note that the computation of resolving moves depends on the current total order.

Recall that an order move (i -+ j) means moving the ith event after the Jth event in

a total order instead of moving event i after event j. The first resolving move varies

when the current total order is different. In our motivating example, both 12345 and

77

12435 violate o5 = (4 --< 1) V (5 -< 2) and share the conflict c5 = (1 -< 4) A (2 -< 5).

However, their first resolving moves are (1 - 4) and (1 -+ 3), respectively, since 4 is

the fourth event in 12345 but the third in 12435.

Recall that a resolving move is either a feasible move, which moves to a child, or a

pseudo move, which moves to a sibling. Thus, resolving moves also consider the total

order's level, which determines the set of these two moves from a total order. The

priority between them follows Lemma 2 so that feasible moves are considered before

pseudo moves. The above example of applying (1 -+ 3) to resolves c4 from 12345 is a

feasible move. An illustrated example of a pseudo move as the first resolving move is

that given 23145 manifesting the conflict c5 = (1 -< 4) A (2 -< 5), (3 -+ 4) is the first

resolving move that moves to its sibling 23415. However, when resolving a conflict

requires moving an event larger than 1, no valid resolving move exists. For example,

resolving the conflict c 2 = (3 -< 2) from 13245 requires moving 3. However, 3 cannot

be moved in the subtree rooted at 13245 because the level of 13245 is 2 < 3.

Formally, we show the method to compute the first resolving move. Consider

a total order L = (P1, P2, --- , pn) with level 1 and an ordering conflict c, = Aqs.
S

We iterate over every q,, = (pji -< py) and then determine the first resolving move

(i -+), which is computed as follows:

(4) -> jt) = argmin (ni' + ',(7.1)

(i'-+j')E

where A, = {(i' N j')| ((pi' -<p) E Cr) A (pi < l)} U {(n - n + 1)}, and (i' -+ j') is

the first order move to satisfy partial order (py -< ps') of cr.

By Lemma 2, the first resolving move of c, is the order move (i' s j') E A,

with the smallest (ni' + j'), which is the first to resolve c, by negating some partial

order in an ordering conflict. Note that A, constrains all the moves that are feasible

or pseudo by forcing (pi 5 1). If no such a move exists, Ar = {(n -> n + 1)} and

(i4 -> j) = (n -> n+ 1). In another word, if any feasible move or pseudo move exists

as resolving moves, (n -+ n +1) will not be selected since it is after any order move by

Lemma 2. Therefore, Equation 7.1 outputs (n -- n + 1) or the first resolving move.

78

7.6.2 Multiple-Conflict Resolving Move

Now we introduce how to combine multiple resolving moves to compute resolving

moves of all the ordering conflicts.

Recall that any order move before a first resolving move of a single conflict is

inconsistent, and thus the first multiple-conflict resolving move is the furthest among

all the first single-conflict resolving moves. For example, the total order 12345 violates

cp4 (3 -< 1) V (4 - 1) and S05 = (4 -< 1) V (5 -< 2), resulting in the ordering conflicts

C4 (1 - 3) A (1 - 4) and c5 = (1 -< 4) A (2 -< 5). The first resolving moves of c 4 and

c 5 are (1 -+ 3) and (1 -+ 4), respectively. The first multiple-conflict resolving move

of c4 and c5 should be (1 -* 4), which is the first move to resolve both conflicts. If

we apply a move before (1 -+ 4) such as (1 -+ 3) and then obtain 23145, we notice

that 23145 still manifests c 5 .

Formally, we show the method to compute the first multiple-conflict resolving

move. Given a total order L and a set of ordering conflicts C, we first compute

the first resolving move (i - j*) of every ordering conflict c, c C. Then, the first

resolving move (it -+ jt) of C is obtained as follows:

(it -+ jt) = argmax (ni + j), (7.2)

where A = {(it -+ jt) 1 (4 -+ jt) is the first resolving move of c, E C}. As any order

move before a first resolving move manifests some ordering conflicts, we choose the

furthest order move in A. Thus, the order move obtained by Equation ?? is the first

resolving move before which all the order moves manifest some ordering conflicts.

7.7 NextMove Algorithm

In this section, we introduce NEXTMOVE (Algorithm 3) that considers both ordering

conflicts and search states to generate a resolving move. While the resolving moves

or the first resolving move discussed in the previous section are for conflicts, we

also consider the search state in the implementation Algorithm 3. Figure 7-3 gives

the examples of computing resolving moves for eight iterations for the motivating

79

Algorithm 3: NEXTMOVE

Input: (L, C, i, j, l)// L = (P, P2, .. , Pn)
Output: (it, jt)

1 if ni + j > nl then
2 (itjt) +- (i',i' + 1) for (pg = 1) in L
3 ifj<n then
4 (it,jt) <-(i,j+1)
5 else

6 L (it, t)- (i+1, i+ 2)

7 for cr E C do
8 (i4, jt) +- (n, n + 1);
9 for qns E c, do

I1O (pi, -< py) +- q,, in L

11 if p' < 1 and (ni' + j') <(nit + it) then

12 (it, J) <- (1, 1) and break

13 if P' < 1 and (ni' + j') < (nif + jt) then

14~~ (if, jf) +- (i',j'

15 if pt > 1 then return (n, n + 1);

16 if (nit + it) < (ni, + jt) then (it, jt) +- (it, jt);

17 return (it, jt)

example, and the resolving moves are in blue. Consider the fourth iteration as an

example. As 12345 manifest c4 and c5 , the first resolving move of these two conflicts

from 12345 is (1 -* 4). However, given the search state is (2,2, 5), the corresponding

resolving move is (2 -+ 3).

NEXTMOVE takes as input a total order L, a set of ordering conflicts C, and

search state (i, j, 1). The algorithm outputs the first resolving move that has not been

applied from L.

Lines 1-6 compute the initial next move with respect to the last applied order

move: Lines 3-6 are the same as Lines 6-9 in Algorithm 2; Line 1-2 generates an

pseudo move to the adjacent sibling when its children are exhausted, or (n, n+1) when

both its children and siblings with the same level are exhausted, which is identical

to the move of an unresolvable conflict. Recall that for the search state (i, j, 1) of L,

(i -+ j) is the last applied order move from C and 1 is the level of C. By (i -+ 3),

we know any order move before (i - j) has been applied or skipped and thus is

80

unavailable.

Q~ ~ (P {qhl, cp2, p)3, (p4} U { 05, q)6)}
1(1-2) for Search status (1, 1, 5) p1 = (1 5) 3 (2-3) for Search Status: (2, 2, 5)
(1-3) for c4= (1<3) A (l<

4
) e2 = (2<3) (1-3) for c4 = (1<3) A (1<4)

p3 = (2<4) (1-4) for c5 = (1<4) A (2<5)
Q _ cp4 = (3<1) v (4<1)

(1-2) for Search Status: (1, 1, 1) 12345 p5 = (4<1) v (5<2)
(3-4) for c5 = (1<4) A (2<5) p6 = (1<3) v (1<4) (2-3) for Search Status: (1, 1,2)

f (41) for c2 =(3<2)

F S
(1-+4) for Search Status: (1, 3, 5)i

(1-3) for c4 = (1<3) A (1<4) 1 (3-+4) for Search Status: (3, 3, 5)

(=o-o) for c6 = (3<1) A (4<1) 'I(1.2) for Search Status: (1, i., 3)
L 2413 (1-3) for c4 = (1<3) A (1<4)

5 2_4 _5 (1+4) for c5 = (1<4) A (
2
<5) 1

Figure 7-3: Solving the motivating example by using CDITO in eight iterations. The
procedures of computing resolving moves for these iterations are given in the dotted
boxes; the resolving moves are in blue; the implicit ordering relations W5 and S06 are
in red and discovered by the second and fourth iterations, respectively.

The inner loop (Lines 8-14) computes the first resolving move (it - j) of each

ordering conflict q, E c., by following Equation 7.1, and the outer loop computes the

first resolving move (it - jt) with respect to all the single-conflict resolving moves

by following Equation 7.2. In the inner loop, the algorithm begins with (n - n + 1)

(Line 8) and updates the first resolving move with a nearer order move that negates

a partial order (Lines 13-14). To accelerate this procedure, Line 12 breaks the inner

loop when (it - jt) would be entering an inconsistent subtree with respect to the

incumbent of the resolving move by following Equation 7.2. In the outer loop, Lines 1-

6 initialize (it - jt) with respect to the last order move (i, J). The algorithm updates

(it a jt) when a resolving move that jumps further is found (Line 16). To accelerate

this procedure, we return (n, n+ 1) when an ordering conflict is unresolvable (Line 15).

7.8 CDITO Algorithm

In this section, we present the algorithmic details of CDITO (Algorithm 4). CDITO

follows the same search strategy of Total Order Search (Algorithm 2) within a total

order tree and uses resolving moves to jump over inconsistent total orders (Algo-

rithm 3). The focus of this section is how to use resolving moves to guide search. We

81

also show the eight iterations of solving the motivation example in Figure 7-3 and

Table 7.1.

Algorithm 4 takes as input a total order 4, a stack of search states P, an ordering

relation b, a set of constraints D, a set of consistency checking functions H, and a

set of conflict extraction functions H. CDITO outputs either an empty set (Line 23)

or a total order that satisfies (D and I1 (Lines 2-5).

P (ij,l) Resolving Move
1 12345 [(1, 1, 5)] (1, 1,5) (1 - 3)
2 23145 [(1,1, 1), (1,3,5))] (1,1, 1) (3 -4)
3 12345 [(1,3,5)] (1,3,5) (1 -4)
4 23415 [(1, 1, 1), (1, 4, 5)] (1, 1, 1) (5 -6)
5 12345 [(2, 2, 5)] (2, 2,5) (2 - 3)
6 13245 [(1, 1, 2), (2, 3, 5)] (1, 1,2) (5 - 6)
7 12345 [((3, 3, 5)] (3,3, 5) (3 -+4)
8 12435 [(1,1,3),(3,4,5)] (1,1,3) (1-+3)
9 24135 [(1, 1, 1), (1, 1, 3), (3, 4, 5)] (1, 1, 1) Solution

Table 7.1: Solving the motivating example by using CDIITO in eight iterations.

The consistency checking functions F take as input L and H and determine the

consistency of a total order with repsect to H. Some additional ordering relations can

be extracted by negating the ordering conflicts Ch found by the conflict extraction

functions H on demand. Then, these relations are added into 1 to avoid generating

total orders with similar inconsistency (Line 8). As shown in Figure 7-3, H is invoked

two times in the total eight iterations: the second iteration extracts an ordering

relation p0 from inconsistent concurrency, and the fourth iteration extracts W6 from

temporal inconsistency.

In order to compute the resolving move (it -+ jt), the algorithm collects all the

ordering conflicts C (Line 10) and inputs C into NEXTMOVE (Algorithm 3) along

with the current total order C and the search state (i, j, 1) (Line 11).

The resolving moves (it -+ jt) output by Algorithm 3 are of four types, and they

are handled differently (Lines 12-22): (1) if < 1; (2) 1 < if < n; and (3) it = n. As

shown in Figure 7-3, the motivating example is solved by 8 iterations: the second

iteration is of type (2), the fourth and the sixth iterations are of type (3), and the

82

1

1

1

1:

1~

1:

1'

11

2

2:

Algorithm 4: CDITO

Input: (L, P,<4, H, F, H)// L = (pi, p2, ,Pn)
Output: L or {}

1 while 4k is consistent and P # {} do
2 if L satisfies <D then
3 consistent? +- F(L, II);

4 if consistent? = T then

5 1 return L
6 else
7 Ch= H(L, H) ;
8 <- (P U (,-r =c r cr E Ch

9 (i ,l -P[11 ;
0 C <{cr = ,r L violates r E D};
1 (it,jt) +- NEXTMOVE(L, C, i, j, l)
2 if it < l then
3 L +- L ((it - it);

4 P[11 <- (if, it, 1);
5 push (1, 1, it) to P
6 else

7 pop P;
8 if P # {} then
9 (Pjl)<- [1 ;
0 ÷- e (j' - (i' - 1));
1 if 1 < it < n then P[1] <- (i', jt -

2 if it = n then P[1] +- ((i' + 1), (i'

1, 1') ;
+ 1), l');

23 return {};

other iterations are of type (1).

When a resolving move is of type (1) and it < 1, this resolving move is a feasible

move and we directly apply it to generate a child (Lines 13-15). Consider the third

iteration as an example. The current total order is 12345, its search state is (1, 3, 5),

and the resolving move output by Algorithm 3 is (1 -+ 4). Then, search moves to

23415, a child of 12345. For the other two types, CDITO backtracks (Lines 17-20) but

updates the parent's search state in different ways. In the following two paragraphs,

we introduce the update rules of type (2) and type (3).

When a resolving move is of type (2) and I < it < n, this resolving move is a pseudo

move, and CDITO updates the parent's search state to (i', jf - 1, 1') (Line 21). Take

the second iteration as an example, the total order is 23145 and the resolving move

83

is (3 -+ 4). If we could apply (3 - 4) to 23145, we would obtain 23415, which is the

sibling of 23145. However, (3 - 4) is a pseudo move from 23145, which cannot be

directly applied. Thus we update its parent's search state to (1, 3, 5), and the next

order move from its parent is (1 -+ 4) that moves to 23415.

When the resolving move is of type (3) and it = n, this resolving move is neither

feasible or pseudo, and CDITO updates the parent's search state to (i' + 1, i' + 1, 1')

(Line 22). By updateing, CDITO prunes all the descendants of the current total

order, all its siblings with level 1, and all the descendants of these siblings. Since

there exist some ordering conflicts that require moving an event larger than 1, these

conflicts remain in its siblings with level 1. By Lemma 1, these conflicts also remain

in the descendants of this total order and these siblings as well. Take the fourth

iteration as an example, the current total order is 23415, and its parent search state

is (1, 4, 5). As the resolving move is (5 -+ 6), all its siblings with the level 1 are

inconsistent, thus we update its parent's search state to (2, 2, 5), and its parent will

explore the children with level 2 in the next iteration.

As CDITO can handle ordering conflitcs including multiple partial orders, we are

able to guide the total order search by leveraging conflicts from both disjunctive par-

tial orders and temporal and state consistency, which is critical to efficiently solving

ordering problems.

7.9 Incorporating Non-strict Orderings

The aforementioned CDITO algorithm is able to generate a consistent total order

of the events of Episodic CSPs. As only the strict ordering relation -< in a total

order is considered so far, we introduce a method to relax the total order obtained by

CDITO into a more flexible ordering LR with the non-strict ordering relation -< in

this section. While the non-strict ordering method introduced in [371 forces equality

constraint between events to disjoint inconsistent overlaps, our method relaxes a

strict ordering solution to be non-strict ordering, which avoids an expensive search

for disjointing inconsistent overlaps.

84

For example, we can relax the total order L = 23145 = (2 -< 3 -< 1 -8 4 -< 5)

into a total order L = 23145 = (2 -< 3 -< 1 -< 4 < 5), which means EPl and EP2

can end at the same time. We begin by proving the relaxed total order still satisfies

the temporal and state consistency discussed in this chapter. Then, we provide the

relaxation method and solve the motivating example with this method.

We first show that as L is temporally consistent, its corresponding non-strict total

order LR is also consistent. As every partial order a -< b introduces the temporal

constraints (0, oc) into a Simple Temporal Networks, and a -< b introduces [0, oc),

changing (0, oo) to [0, oc) is equivalent to relaxing the temporal problem. Therefore,

the temporal consistency still holds for the relaxed total order. For example, by

relaxing the strict total ordering between 4 and 5, the temporal consistency still

holds.

The state consistency of L also holds for its relaxed total order 1 R. We prove this

by first showing every pair of episodes is still state consistent in two conditions: (1)

for every pair of episodes that is disjoint because of the partial order a -< b in L, the

end event of an episode that is a precedes the start event of the other episode that

is b. By relaxing a -a b into a -< b, these two episodes are still disjoint; (2) for every

pair of episodes that overlaps because of some partial orders in L, these two episodes

either are disjoint or still overlap when we relax some strict orderings, and the state

consistency still holds in either case. As we have proved that the state consistency

still holds for every pair of episodes under a relaxed total order LR, we know LR is

also state consistent.

As the temporal and state consistency still holds for LR, the problem is to find such

LR that satisfies the ordering relation in the ordering problem. Now, we introduce

the method to relax L to a total order LR with as less -< as possible by solving an

Optimal CSP. Given a total order L = (P1, P2, .. , Pn) = (P1 A P2, .. , - Pn) of the events

E with size n, and the ordering relation = {<}, the Optimal CSP for this relaxation

problem (X, C, g) is as follows:

* X is a set of (n - 1) integer variables with the domain {0, 1} and determines

the relaxed total order by specifying the ordering relation between the adjacent

85

events in LR. For i E {1, 2, .. , n - 1}, xi E X represents the ordering relation

between p and Pi+1 in , where (xi = 0) =-> (pi -< pi+1), and (xi = 1) =

" C is a set of constraints that scope on a subset of X and constrains the relaxed

total order to still satisfy the ordering relation 4b. For each clause #b E 4b, we

extract a constraint c, into C as follows:

1. We remove all the partial orders of #, that are inconsistent with L and

obtain a removeed clause 0* = Aqr,;

2. Then, for each qr, = (pi -A pj) E #*, we have crs = (xi = 0) V (xi+1 =

0), .. , V(xj_ 1 = 0).

3. Finally, we have Cr Vcr.

" g : X -+ {0, 1, 2, .. , n - 1} is the maximization objective function that represents

the number of non-strict orderings in the relaxed total order, and g = E xi.
XieX

Now we continue with the solution of our motivating example L = (2 -< 4 -

1 -< 3 - 5) and formulate the corresponding relaxation problem as an optimal CSP

(X, C, g) as follows:

" X ={1, x 2 , x3 , x4 } with the domain {0, 1}.

* C = {cic2 , c3 , c4 , c5 , c6 } are extracted from <= {=Q1, 9 2 , 93 , W 4 , W5 , W6 } as

shown in Table 7.2.

" g=x 1 +x 2 +x 3 +x 4 .

We use the conflict-directed search method introduced in [40] to solve this Optimal

CSP. For the above example of relaxing L = (2 -< 4 -A 1 -< 3 -< 5), the best solution

is {x, = 0, x 2 = 0, x 3 = 0, x 4 = 1} with the maximum objective 1, which leads to the

relaxed total order LR = (2 -< 4 -< 1 -< 3 --< 5).

86

r S, S,* Cr

S 1 5 1 5 (X3 = 0) V (X4 = 0)
2 2 -3 2 -3 (xI= 0) V (x2 0) V (x3 = O)
3 2 -4 2 -<4 X1 0
4 3 1 V (4 -1) 4 -1 x2 = 0
5 (4 -1) V (5 -<2) (4 -<1) X2 =_ 0
6 (1-3)V(14) (1-3) x3 = 0

Table 7.2: Extracting constraints
example with the solution L = (2

C from the ordering
4 -- 1 -< 3 -- 5).

relation <b for the motivating

7.10 Summary

In this section, we presented CDITO, a systematic and incremental algorithm to effi-

ciently order the events in a partially ordered plan by applying conflict-directed search

on a tree of total orders. During the search, our method computes resolving moves by

considering ordering conflicts and search states. By leveraging these resolving moves,

CDITO is able to skip inconsistent total orders, exploiting the special structure of this

tree. We also introduced a method to relax strictly-ordered total orders generated by

CDITO to non-strict ordering to achieve higher flexibility.

87

88

Chapter 8

Experimental Results

Amundsen has been experimented as part of a network configuration system to man-

age network flows with mission specifications on loss, delay, and bandwidth over time.

Our motivating example is also a temporal network configuration problem. We imple-

mented the following experiments to compare Amundsen against UnifyHistory over

these problems with different size and complexity and thus demonstrated Amundsen

is able to handle large-scale configuration problems and is also much faster than the

state-of-art configuration manager UnifyHistory. UnifyHistory is fast since it lever-

ages the Incremental Total Ordering to fastly generate total orders and incrementally

checks the temporal consistency. Amundsen is built upon Unifyhistory and thus uses

the same hybrid approach, which is comprised of a master for generating total orders

and sub-solvers to check the state and temporal consistency.

8.1 Experiment Description

The problems were provided by a communication network simulator that generates

network flows with random duration constraints and characteristic requirements on

a meshed network.

The simulator setup is as follows: (1) the mission horizon is 300s; (2) the meshed

network has 16 nodes and 240 links; (3) the loss, delay, and bandwidth of each

link are uniformly generated from continuous intervals [0.1,0.3]%, [0.1,0.31s, and

89

[500,1000]kbps; (4) the loss, delay, throughput, and minimum duration of each trans-

fer mission are uniformly generated from [0.1,0.3]%, [0.1,0.31s, [600,1000]kbps, and

[20,80]s; (5) the generator adds temporal constraints between randomly chosen events

with a duration (0,100], and the number of temporal constraints is one fifth of the

mission number;

8.2 Results

We test five problems of 10, 20, 30, 40, and 50 missions with Amundsen and a baseline

solver that is the core component in tBurton to unify multiple timelines and manage

device configurations over time [37]. We ran 100 trials for each scenario, and the

timeout was 20 seconds that is the duration between two replan requests in real-

world experimental devices.

Amundsen UnifyHistory
#flows #solved Ns NU #solved NS N

10 94 7 221 9 1 233
20 91 6 27 5 1 38
30 86 5 10 6 1 18
40 82 4 16 11 1 21
50 74 5 14 8 1 24

Table 8.1: Experimental results. #solved: number of solved trials; Ns, Nu: average
number of total order generations in solved and unsolved trails by using Amundsen;
NS, N: average number of total order generations in solved and unsolved trails by
using the baseline solver.

Table 8.1 shows that Amundsen solves nearly 80% of the problems, while the

baseline solver solves only 10% of the problems in 20 seconds. It can be seen that

Amundsen finds consistent solutions quickly after generating around 5 total orders in

all the solved trials, which demonstrates that Amundsen is capable of using conflicts to

efficiently guide search and avoid unnecessary order generation or consistency check.

However, NS equals 1 in all solved trials, which means, in large-scale problems, the

baseline solver can find solutions only if a proper initial order is generated. Overall,

as #flows increases, checking more grounded consistency is more expensive. Thus,

90

both solvers generate fewer orders in unsolved trials, and we observe the significant

decreases of Nu and Ns. In every scenario, Nu is slightly less than N5r, which

demonstrates that efforts put on reasoning over conflicts are not expensive compared

to other costs.

8.3 Summary

In this chapter, we presented the empirical results of our approach by benchmarking

against a baseline solver on a communication network simulator. We show that

Amundsen is able to successfully manage hundreds of network requests in simulated

missions given strict time limits. Amundsen is also able to find plans in 10 times as

many scenarios as the baseline solver.

91

92

Chapter 9

Conclusion

9.1 Summary of Contributions

As reasoning over complex temporal behaviors is critical to the successful planning

and execution of robotic systems, we develop and present Amundsen, a timed config-

uration manager that is an executive that takes as input a temporal mission specifi-

cation and models and outputs an execution plan. This timed configuration manager

is able to reason over complex models with both continuous and discrete specification

to achieve temporal concurrent goals. We summarize the contributions of this thesis

as follows:

1. Solving timed configuration management problem

Our first contribution is an architecture for solving configuration management

problems of networked devices over the continuous timeline to achieve tempo-

rally concurrent goals. This problem is hard due to its mixed continuous-discrete

constraints that and temporal constraint, which are highly coupled. We handle

this problem by modeling it as a timed configuration management problem.

Then, Amundsen translates this problem into an Episodic CSPs that are solved

by an efficient Episodic CSP solver.

2. Solving problems with complex constraints over time

93

Our second contribution is to defined a new problem called Episodic CSPs and

develope a corresponding solution approach called Incremental and Conflict-

directed Episodic Satisfaction (ICES). Episodic CSPs extend classical CSP

swith the notion of time and serves as a general definition for many classical

problems such as Vehicle Routing Problems with Time Windows and Jobshop

Scheduling Problems. We carefully investigated the properties of Episodic CSPs

and presented a restricted but expressive class called Time-invariant Episodic

CSPs. ICES is able to efficiently solve Time-invariant Episodic CSPs by lever-

aging an efficient decomposition modules and a conflict-directed ordering algo-

rithm.

9.2 Future Works

There are many interesting avenues for future research related to our timed configu-

ration manager. We describe some of them in this section:

Risk-aware Decision Making

The timed configuration manager currently assumes that the state of the world and

the system model are perfectly known. Since this is often not the case in the real

world, we should consider the uncertainty of the environment. We could consider

searching for plans that guarantee success with a certain degree of confidence. We

call these plans as chance-constrained plans. The previous work focuses on the chance-

constrained problem over discrete time. However, in our case where the timeline is

continuous, we would like to investigate the corresponding problems over continuous

time, which has not been well studied.

Another important aspect is the uncertainty over time. Simple Temporal Networks

with Uncertainty describe temporal problems with uncontrollable time behaviors [36].

In our problem, we can extend the temporal constraints to uncontrollable temporal

constraints to capture the uncertainty over time. Then, to reason over such a problem,

we can leverage the advanced temporal consistency checking algorithms in terms of

94

different types of controllability.

Time-variant Episodic Constraint Satisfaction Problem

In this thesis, we only presented the method to solve Episodic CSPs with constant or

uniform episodes. However, the general case where episodes represent changing effects

such as motion trajectories are still intractable according to what we know. Studying

the state constraints that allow arbitrary functions or more general functions such

as linearly changing effects with different rates is important for our configuration

manager to handle more complex system dynamics while solving reasonably large-

scale problems with various temporal features.

Generative Planning Module

Our timed configuration manager currently assumes an automaton can transition

between every pair of transitions and each transition is guarded by a control variable.

Thus, we cannot handle more complex guards scoping on state variables. To handle

these complex guards requires a generative planning module to determine the system

transitions. We would extend our system to be generative. The idea is to build a test

and trial search module upon the current system that is responsible for generating

all the transitions for all sub-systems. They are expected to interact with each other

through conflicts that summarize the infeasible transition combinations.

95

96

Appendix A

Network Configuration Problem

A.1 Problem Specification

In this section, we provide a formal definition of the network configuration problem

with mission specifications. We begin with a motivating example problem from which

we will define the network configuration planning problem. We will then outline the

inadequacies of a reactive based approach and highlight the desired features of an

automated network configuration planner.

Example 1. (Replanning an FTP transfer with a deadline) We have the network

topology as in Figure A-1, with six nodes in a fully connected network. For each link,

the bandwidth available is 5Mbps, with loss 1.5%, and 10 millisecond delay.

h d

Figure A-1: Network topology for the example problem.

97

--- W

In specifying the mission, we use time index t, such that the start time of the

mission occurs at t = 0. Initially, there is only an FTP transfer from 9 to 3, of size

560Mb. The transfer must be completed by time t = 120s, and has no delay or loss

constraints. At time t = 30s, a video flow from 9 to 3 stars, which requires 1Mbps

bandwidth, less than 1% loss, and up to 15-millisecond delay.

We want to route both flows, such that the FTP transfer finishes by the set time

limit, and such that the video flow is placed on a route satisfying the bandwidth,

loss and delay constraints. In addition to the choice of routes, we must also choose

the configuration of each flow. The configuration choices included dropping the flow,

applying FEC with three source packets and one parity packet, or routing without

FEC.

The example above serves to illustrate the most essential features of a network

configuration planning problem. In such specifications, we must capture features of

the network, the mission requirements for the flows, and the allowed configurations

for the flows.

Formally, the network configuration problem specifications are defined as follows.

Definition 21. (Network configuration problem specification) We consider the Net-

work Configuration Problem to consist of the following network specifications:

" A set of nodes: N ={1, ... , n};

" Vi E N j E N, BWe[i, j] is the maximum bandwidth between two nodes;

" Vi E N j N, L[i, j] is the expected loss between two nodes; and

" Vi c N j N, De[i, j] is the expected delay between two nodes.

The problem also contains the following flow requirement specifications:

" A set of flows: M = {1,...,m};

" Vk E M, BWf[k] is the minimum required throughput of flow k;

" Vk E M, Lf[k] is the maximum allowable loss of flow k;

98

. Vk E M, Df[k] is the maximum allowable delay of flow k;

" Vk e M, source[k] E N is the start node of flow k;

" Vk c M, sink[k] G N is the destination node of flow k; and

" Hf is the maximum allowable hops of flows.

The problem also contains the following information on available configurations:

" For each flow k G M, a set of configurations: Ck = 1,..., ck};

" Bandwidth on link function b : Ck x R -÷ R, such that b(ci, T) is the actual band-

width on link required after applying FEC ci to a flow with required throughput

Ir;I

" Loss on link function 1 : Ck x [0,1] -4 [0,1], such that l(ci, 5) gives the reduced

loss resulting from adopting configuration ci on a link with loss 6; and

* Utility u : Ck -+ R, such that u(ci) gives the utility of choosing configuration ci.

In describing the network features, each link from node i to node j (i, j E N) has

three characteristics: bandwidth BW [i, j], loss Le [i, ji], and delay De [i, j]. As the

network is meshed, BWe[i, j] is set to 0 if nodes i and j are not directly connected.

For flow requirements, each flow k E M has start node at source[k], and desti-

nation node sink[k]. In addition, the throughput allocated to flows has a minimum

required value BWf [k]. Upper bounds on the allowed cumulative delay and loss along

the assigned path are also restricted to be below Lf [k] and Df [k] respectively. We

also model Hf an upper bound on the number of hops allowed for any flow.

Each flow k has a set of possible configurations Ck, which represent Drop, Normal,

and various FEC settings. Each choice of configuration leads to different bandwidth

on links, loss on links and utilities, calculated according to functions b, 1 and u

respectively.

Current network approaches are reactive controls based and do not consider mis-

sion specifications. The behavior observed with current systems given the problem in

99

Example 1 is as follows. At time t = 0, the FTP will be placed on the link 9 -+ 3,

and use up all 5Mbps of the available bandwidth. At t = 30s, there would be approx-

imately 150Mb of the FTP transfer completed. However, the controller will react to

the new video transfer, and also place the video flow on the 9 -+ 3 link. As a result,

the remaining 410Mb of the FTP transfer will only have 4Mbps bandwidth allocated.

The FTP transfer will then require an additional 100 seconds to complete, and thus

miss the transfer deadline.

By inspection, it can be confirmed that, by placing the FTP on an alternative

route from 9 to 3, for example on links 9 -+ 1 and 1 -+ 3, we can meet the mission

specifications for both flows, provided that we can also apply an FEC to correct

for the link loss. We thus require a mission aware network configuration planner

that autonomously produce such plans. In the subsequent section, we examine some

relevant literature on techniques related to our solution method.

A.2 Constraint Modeling and Encoding

In this section, we describe the model used to encode the network configuration

planning problem. We first provide a brief overview of the model for FEC used.

We then describe the decision variables used to describe the choice of routes and

actuation, as well as the auxiliary variables required for constraint checking. Lastly,

we describe the set of constraints which ensure that the routes and actuations are

feasible given the network and meet the mission specifications.

FEC modeling

This model was developed as part of the EdgeCT DARPA project, and thus must

model well-defined actuators. Packet FEC is one such actuator, used to reduce loss

on a link at the expense of consuming more bandwidth.

When FEC is applied, q packets of the source are sent with p packets of parity,

such that whenever at least q packets are received out of the p + q sent, then the

source can be entirely recovered. In the case when less than q packets are received,

100

only q' < q the number of received source packets can be recovered.

The effect on the bandwidth is thus straightforward: for throughput requirement

BW, applying q source and p parity FEC means we have bandwidth over each link

of

p + q BW
p

We approximated the effect of FEC on loss as follows. For each FEC block of q

source and p parity packets, sent over link with loss 6, we may consider the expectation

of the proportion of packets successfully sent. We will calculate

1
ffec(q, k, 1 - 6) = -E [source packets recovered]

q

For convenience, define the probability mass function of a binomial distribution

as

B(q, q', 1 - 6) (q (1 -j)"jq~q'

for q the number of trials, q' the number of successes, and 1 - 6 the probability of

success for each trial.

For FEC, we consider first the case when at least q packets were delivered:

1
-E [source packets recovered when at least q delivered]
q

p+q

=A h x B(p + q, i, -l
q =q

p+q

= B(p + q, i - (A.1)
i=q

101

Consider now the case when fewer than q packets were delivered:

1
--E [source packets recovered when fewer than q delivered]
q

q-1 i

Ez Y3 S jP(i delivered)P(j of i sourceli delivered)
q i=1 j=1

h-1 i

x B(p q, i,6)B(i,j,) (A.2)
q p+ (A2

Summing the two terms we find

ffec(q, p, 1 - 6)
peq

= 5 B(pq,i, 1- 6)
i=q

Iq-1 i
+ j x B(p + q, i, 1 - 6)B(i,j,) (A.3)

q i=1 j=1 r + q

Given that FEC with q source and p parity was applied, expected loss on a link

with loss 6 is thus

LFEC(q,p, 1 -6) 1 - ff c(q,p, 1-)

Variables

In encoding the network configuration planning problem, we create the following

variables:

" Vi E N, k E M, s[i, k] E N is the direct successor of flow k on vertex i;

" Vi c N, k EM, l[i, k] is the cumulative loss of flow k on vertex i;

" Vi E N, k E M, d[i, k]is the cumulative delay of flow k on vertex i;

" Vi E N, k E M, h[i, k]is the cumulative hops of flow k on vertex i;

" Vk E M, z[k] E {1, ... , ck} is the configuration of flow k;

" Vk e M, c E Hk, bw[k, c] is the minimum required throughput of flow k;

102

" Vk E M, c E Hk, i E N, j E N, le[c, i, j] is the expected loss between two

vertices when a flow with configuration w passes this edge; and

" Vk E M, c E Hk, i E N, j E N, de[w,Zi,j] is the expected delay between two

vertices when a flow with configuration w passes this edge.

As in encodings common to constraint programming of VRP [181, we define a

set of successor variables s. Intuitively, every successor variable denotes the direct

successor node of a node A on a flow's routing path with an integer domain whose

values represent the nodes connected to vertex A. Note that the successor variables

on the same node for different flows are different. Thus, s[i, k] for i c N, k e M is

the successor variable for node i and flow k. Given a set of assignments to successor

variables of a flow, we may recursively extract the path as the set of successors from

the source of the flow.

In addition to successor variables, for each node i and flow k, we also have variables

1, d, and h, representing cumulative loss, delay and hops when flow k reaches vertex

i. These variables are used to maintain upper bounds on the cumulative loss, delay,

and hops.

Lastly, we also create variables z which describe the choice of configurations.

We create the auxiliary variables bw and le which describe the effects on bandwidth

required on a link and loss on a link.

Constraints

In this section, we describe the constraints used to represent the effects of configu-

ration choices, constraints for network capacity, and constraints to enforce mission

specifications.

We begin with constraints representing the effect of FEC. Assume that we have a

mapping Fk which gives us a tuple (q, p) of source and parity packets, for any choice

of configuration z[k] for flow k:

103

* When flows dropped:

(z[k] = c) A (Fk[c] = (0, 0)) =

(bw[k,z[k]] = 0)

A (le[k, z[k], i, j] = 0)

A (de[k, z[k], i, j] = 0)

Vk E M,i E N,j N (A.4)

* FEC configuration for each flow not dropped:

(z[k] = c) A (Fk[c] $ (0, 0)) =

bw[k, z[k]] = p+q BWf

A (le[k,z[k],i, j] = LFEC(q,p, Le[i, j]))

A (de[k, z[k], i,j De[Z, j])

Vk c Mc C Ck,iE Nj E N (A.5)

When the flow is dropped, then the cumulative loss and delays, as well as the band-

width required on a link is set to zero. This allows the loss and delay constraints

to be trivially satisfied, and the flow does not take up space on the links. However,

when the flow is not dropped, the bandwidth on link and loss are calculated given the

model for FEC above. Note that the application of FEC does not change the delay

on a link.

Routing of flows is encoded using a ProperCircuit constraint, as in VRPs.

* ProperCircuit: Each flow circuit visits a subset of N

ProperCircuit(s[:, k]) Vk E M (A.6)

104

dummy link

2 /

4

5

3

Figure A-2: An example of successor assignments satisfying ProperCircuit, for a flow
with source 1 and sink 5.

o The successor of each flow's end should be its start:

s[sink[k], k] = source[k] Vk c M (A.7)

ProperCircuit [?] is a global constraint commonly used in VRP that enforces the

requirement for a set of nodes with one circuit visiting once a subset of the nodes.

If a node is not connected to any other node, its successor is itself. For example.

{s[1, 1] = 2,s[2,1] = 3,s[3,1] = 1,s[4, 1] = 4,s[5,1] = 5,s[6,1] = 6} is a proper

circuit, because {1, 2, 3} are in a loop and 4,5,6 point to themselves. We also add a

dummy link for each flow, such that the successor of its sink is the source. With this

dummy link, the path for every flow is a cycle. An example is given in Figure A-2.

We must also ensure that the flows, given chosen configurations, are routed ac-

cording to limits on link capacities.

* Edge bandwidth capacity constraint:

Z bw[k,z[k]] < BWe[i, j]
kE{keMI (s[i,k]=j)A(sink[k]$i)}

ViE N,j c N (A.8)

105

For each vertex i, the consistency check of bandwidth capacity is performed on all

the links. For a link (i, j), if a flow k has passed this link such that s[i, k] = j, the

throughput requirement of the flow k will considered unless the link (i, j) is a dummy

path of flow k such that sink[k] = i. Lastly, because the successors of isolated vertices

are themselves and these self-loops are also counted, the maximum bandwidth from

each vertex to itself should be set as a positive infinite value to satisfy the bandwidth

constraint.

Recalling that the flows have upper bounds over allowed accumulated loss, delay,

and number of hops, we define the following constraints.

" Loss constraints (conservative approximation with the union bound):

l[source[k], k] = 0

l[s[i, k], k = l[i, k] + le[z[k], i, s[i, k]]

l[sink[k],k] < Lf[k]

Vk E M, i E {i E NI(i # s[i, k]) A (i $ sink[k])} (A.9)

" Delay constraints:

d[source[k], k] = 0

d[s[i, k], k] = d[i, k] + de[z[k], i, s[i, k]]

d[sink[k], k] < delayf [k]

Vk E M, i E {i E NI(i $ s[i, k]) A (i $ sink [k])} (A.10)

" Hops Constraints:

h[source[k], k] = 0

h[s[i,k],k] = h[ik] + 1

h[sink [k], k] < Hf

Vk E M, i E {i E NI(i # s[i, k]) A (i $ sink[k])} (A.11)

106

For each flow k, except for the isolated nodes, delay is accumulated from the source

along the path, stopping when the flow arrives at the sink. We require that the

accumulated delay at the sink is less than that allowed in the specifications. To

account for the dummy link, we do not accumulate the delay from the sink to the

source. Unlike bandwidth constraints, the loss of flow k is not coupled with other

flows. As the isolated nodes are not connected to the sink directly or indirectly

(because of proper circuit propagation), they do not influence the accumulated delay

on every sink.

Similar encodings are used for loss and delay. Note that we chose to enforce the loss

bound using by summing loss along the path. This is a conservative approximation

using the Union Bound, which is true regardless of whether the losses are independent.

The form of the constraint does not change if we assume independence: we can simply

impose a constraint over the sum of the log loss.

Objective

In our encoding, the total utility is a linear sum of the utilities for each flow, for

utility function for each flow p.

max E p(z[k], h[sink[k], k] (A.12)
kEM

In our formulation, we would like to use the minimal amount of FEC such that all

specifications are met. This allows us to have spare bandwidth for unexpected flows

which may arrive during execution. Further, we would like to have short routes, so

that we penalize the number of hops required to arrive at the sink. Lastly, we derive

zero utility for any dropped flow.

107

108

Bibliography

I11 Kenneth R Baker. Introduction to sequencing and scheduling. John Wiley &
Sons, 1974.

12] Javier Barreiro, Matthew Boyce, Minh Do, Jeremy Frank, Michael Iatauro, Ta-
tiana Kichkaylo, Paul Morris, James Ong, Emilio Remolina, Tristan Smith, et al.
Europa: A platform for ai planning, scheduling, constraint programming, and
optimization. 4th International Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS), 2012.

13] Ralph Becket. Specification of flatzinc, 2014.

[4] Amedeo Cesta and Angelo Oddi. Ddl. 1: A formal description of a constraint
representation language for physical domains. New directions in Al planning,
pages 341-352, 1996.

151 Jingkai Chen, Cheng Fang, Christian Muise, Howard Shrobe, Brian C Williams,
and Peng Yu. Radmax: Risk and deadline aware planning for maximum utility.
In AAAI Workshop on Artificial Intelligence for Cyber Security (AICS'18), 2018.

[61 Steve Chien. A generalized timeline representation, services, and interface for
automating space mission operations. In SpaceOps 2012, page 1275459. 2012.

[71 Steve A Chien, Daniel Tran, Gregg Rabideau, Steve R Schaffer, Dan Mandl,
and Stuart Frye. Timeline-based space operations scheduling with external con-
straints. In ICAPS, pages 34-41, 2010.

[8] Patrick R Conrad and Brian Charles Williams. Drake: An efficient executive for
temporal plans with choice. Journal of Artificial Intelligence Research, 42:607-
659, 2011.

[9] Thomas L Dean and Drew V McDermott. Temporal data base management.
Artificial intelligence, 32(1):1-55, 1987.

[101 Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Ar-
tificial intelligence, 49(1-3):61-95, 1991.

[11] Enrique Ferndndez-Gonzilez, Erez Karpas, and Brian C Williams. Mixed
discrete-continuous heuristic generative planning based on flow tubes. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

109

[12] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence, 2(3-4):189-208,
1971.

[13] R James Firby. The rap language manual. Animate Agent Project Working Note
AAP-6, University of Chicago, 1995.

[14] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research, 20:61-
124, 2003.

[15] Jeremy Frank and Ari J6nsson. Constraint-based attribute and interval planning.
Constraints, 8(4):339-364, 2003.

[16] Gecode Team. Gecode: Generic constraint development environment, 2006.
Available from http: //www. gecode .org.

[17] Andreas Hofmann and Brian Williams. Exploiting spatial and temporal flex-
ibility for plan execution of hybrid, under-actuated systems. In AAAI 2006,
2006.

[181 Philip Kilby and Paul Shaw. Vehicle routing. Foundations of Artificial Intelli-
gence, 2:801-836, 2006.

[19] Phil Kim, Brian C Williams, and Mark Abramson. Executing reactive, model-
based programs through graph-based temporal planning. In IJCAI, pages 487-
493, 2001.

[20] Philippe Laborie, Jerome Rogerie, Paul Shaw, and Petr Vilfm. Reasoning with
conditional time-intervals. part ii: An algebraical model for resources. In FLAIRS
conference, pages 201-206, 2009.

[21] Philippe Laborie, Jer6me Rogerie, Paul Shaw, and Petr Vilim. Ibm ilog cp
optimizer for scheduling. Constraints, 23(2):210-250, 2018.

[22] Thomas L6aut6 and Brian C Williams. Coordinating agile systems through
the model-based execution of temporal plans. In Proceedings of the National
Conference on Artificial Intelligence, volume 20, page 114. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

[23] Steven James Levine and Brian Charles Williams. Concurrent plan recognition
and execution for human-robot teams. In ICAPS, 2014.

[24] Hui X Li and Brian C Williams. Generative planning for hybrid systems based
on flow tubes. In ICAPS, pages 206-213, 2008.

[25] Marta Cialdea Mayer, Andrea Orlandini, and Alessandro Umbrico. Planning
and execution with flexible timelines: a formal account. Acta Informatica, 53(6-
8):649-680, 2016.

110

[26] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. Pddl-the planning domain
definition language. 1998.

[27] Nicola Muscettola. Hsts: Integrating planning and scheduling. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST, 1993.

[281 Nicola Muscettola, Paul Morris, and loannis Tsamardinos. Reformulating tem-
poral plans for efficient execution. In KR, pages 444-452, 1998.

[29] Akimitsu Ono and Shin-ichi Nakano. Constant time generation of linear exten-
sions. In FCT, pages 445-453. Springer, 2005.

[301 Gurobi Optimization. Gurobi optimizer reference manual, 2016.

[31] Julie Shah, James Wiken, Brian Williams, and Cynthia Breazeal. Improved
human-robot team performance using chaski, a human-inspired plan execution
system. In Proceedings of the 6th international conference on Human-robot in-
teraction, pages 29-36. ACM, 2011.

[32] I-hsiang Shu, Robert T Effinger, Brian Charles Williams, et al. Enabling fast
flexible planning through incremental temporal reasoning with conflict extrac-
tion. In ICA PS, pages 252-261, 2005.

[33] Eric Timmons, Tiago Vaquero, Brian Charles Williams, and Richard Camilli.
Preliminary deployment of a risk-aware goal-directed executive on autonomous
underwater glider. In ICAPS, pages 213-217, 2016.

[34] Alessandro Umbrico, Amedeo Cesta, Marta Mayer, and Andrea Orlandini. In-
tegrating resource management and timeline-based planning. In ICAPS, pages
264-272, 2018.

[351 Alessandro Umbrico, Amedeo Cesta, Marta Cialdea Mayer, and Andrea Orlan-
dini. Platinu m: A new framework for planning and acting. In Conference of the
Italian Association for Artificial Intelligence, pages 498-512. Springer, 2017.

[36] Thierry Vidal. Handling contingency in temporal constraint networks: from
consistency to controllabilities. Journal of Experimental & Theoretical Artificial
Intelligence, 11(1):23-45, 1999.

[371 David Wang. A Factored Planner for the Temporal Coordination of Autonomous
Systems. PhD thesis, Massachusetts Institute of Technology, May 2015.

[381 David Wang and Brian Williams. tburton: A divide and conquer temporal
planner. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[39] Brian C Williams and P Pandurang Nayak. A model-based approach to reactive
self-configuring systems. In Proceedings of the national conference on artificial
intelligence, pages 971-978, 1996.

111

[401 Brian C Williams and Robert J Ragno. Conflict-directed a* and its role in
model-based embedded systems. Discrete Applied Mathematics, 155(12):1562-
1595, 2007.

112

