
Generalized Conflict-directed Search for Optimal Ordering Problems

Jingkai Chen, Yuening Zhang, Cheng Fang, Brian C. Williams
Massachusetts Institute of Technology

jkchen@csail.mit.edu, zhangyn@mit.edu, cfang@mit.edu, williams@csail.mit.edu

Abstract

Solving planning and scheduling problems for multiple tasks
with highly coupled state and temporal constraints is notori-
ously challenging. An appealing approach to effectively de-
couple the problem is to judiciously order the events such
that decisions can be made over sequences of tasks. As many
problems encountered in practice are over-constrained, we
must instead find relaxed solutions in which certain require-
ments are dropped. This motivates a formulation of opti-
mality with respect to the costs of relaxing constraints and
the problem of finding an optimal ordering under which this
relaxing cost is minimum. In this paper, we present Gen-
eralized Conflict-directed Ordering (GCDO), a branch-and-
bound ordering method that generates an optimal total order
of events by leveraging the generalized conflicts of both in-
consistency and suboptimality from sub-solvers for cost esti-
mation and solution space pruning. Due to its ability to reason
over generalized conflicts, GCDO is much more efficient in
finding high-quality total orders than the previous conflict-
directed approach CDITO. We demonstrate this by bench-
marking on temporal network configuration problems, which
involves managing networks over time and makes necessary
tradeoffs between network flows against CDITO and Mixed
Integer-Linear Programing (MILP). Our algorithm is able to
solve two orders of magnitude more benchmark problems to
optimality and twice the problems compared to CDITO and
MILP within a runtime limit, respectively.

1 Introduction
In order to plan for many real-world problems, autonomous
systems are required to take into account the requirements
over timing and system states. This category of problems
ranges from the classical job shop scheduling problems
(Manne 1960) to hybrid planning problems for multiple
tasks with coupled state and temporal constraints (Wang and
Williams 2015). The key to this body of work has been to ab-
stract the tasks, which are then ordered and checked against
state and temporal requirements. With a consistent total or-
der, these abstracted tasks are then refined into more con-
crete courses of actions by resource managers or schedulers.
The choice of ordering algorithms is particularly important.
A good ordering algorithm should prune unhelpful order-
ings as much as possible to avoid the computationally ex-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

pensive checks of the state and temporal consistency. Re-
cent work demonstrates how generalizing inconsistent or-
derings of events through the interaction with sub-solvers
can greatly accelerate this ordering procedure while explor-
ing a special total order tree (Wang 2015; Chen et al. 2019).

However, the problems specified by these abstract tasks or
non-practitioner users are often over-constrained and con-
tain requirements drawing on competing resources. A key
challenge to solve such problems is to provide high-quality
relaxed solutions in which some requirements are dropped in
order to meet hard constraints representing the environment
characteristics or other higher-priority requirements. This
motivates a notion of optimality with respect to constraint
relaxation, as an extension to previous approaches that only
considered orderings for constraint satisfaction (Wang 2015;
Chen et al. 2019). While recent work has addressed opti-
mal constraint relaxation problems purely for temporal con-
straints (Yu and Williams 2013), we aim to develop an algo-
rithm that can interact with various underlying solvers such
that optimal relaxation problems with tightly-coupled state
and temporal constraints can be tackled by solving an opti-
mal ordering problem.

In this paper, we introduce Generalized Conflict-directed
Ordering (GCDO), an ordering algorithm that generates op-
timal total orders of the start and end events of abstract tasks.
The optimality is defined with respect to a set of constraints
with relaxing costs. GCDO first starts with a total order of
these events and then incrementally changes partial orders in
a branch-and-bound (B&B) manner, during which inconsis-
tency or suboptimality discovered by sub-solvers are sum-
marized as bounding constraints to render cost estimation
and solution space pruning.

Our optimal ordering algorithm is based on the well-
known B&B search method (Lawler and Wood 1966). The
basic idea of B&B is implicitly enumerating all the solu-
tions and pruning suboptimal subtrees along the way. With
different branching and bounding rules, B&B has been used
to solve a wide range of optimization problems. From the
perspective of B&B, as we arrange all the total orders in a
special tree (Ono and Nakano 2005), we branch by explor-
ing subtrees whose total orders share some common partial
orders. Then, we bound and prune the subtrees whose costs
are provably suboptimal, given the shared partial orders.

To estimate the cost of total orders for pruning suboptimal

ones, we draw inspiration from the idea of Conflict-directed
Incremental Total Ordering (CDITO), which extracts con-
flicting partial orders from sub-solvers to guide the search
(Chen et al. 2019). We further extend these conflicting par-
tial orders to account for costs, and thus the search is able
to estimate total order costs without using sub-solvers and
directly jump over suboptimal subtrees. The idea of inter-
acting with sub-solvers is also similar in spirit to Satisfiabil-
ity Module Theories (SMT) solvers such as Z3 (De Moura
and Bjørner 2008) or Optimization Modulo Theories (OMT)
solvers such as OptiMathSAT (Sebastiani and Trentin 2020)
while we are using sub-solvers to find relaxations with re-
spect to suboptimality instead of satisfiability.

2 Motivating Example
Consider a network configuration problem in which we need
to schedule and route four network flows with different pri-
orities and allocate bandwidth resources of a network. In this
network, the links have different characteristics of loss, de-
lay, and bandwidth capacity, as shown in Figure 1.

1 3

20.1%,
0.1s,
500kpbs

1%,
0.1s,
500kpbs

0.1%, 0.5s, 500kpbs

Figure 1: Network topology and statistics.

All these four flows have source node 1 and destina-
tion node 2, and Table 1 gives their mission specifications
on maximal loss, maximal delay, and minimal required
throughput. A detailed description of these specifications
can be found in (Chen et al. 2018). The allowable duration
lengths for all the flows are [30, 60] seconds. There are also
priorities associated with these flows. As Flow-A and Flow-
D are very important, they must be transferred. The costs
for dropping Flow-B and Flow-C are 3 and 5, respectively.
The mission also has temporal requirements: (1) Flow-B and
Flow-C should start at the same time, and their ends should
be at least 20 seconds apart; (2) Flow-A and Flow-D should
start and end at the same times; (3) Flow-B and Flow-C
should finish before Flow-A and Flow-D end; (4) we pre-
fer the whole mission to finish in 70 seconds; if the mission
takes longer than required, cost 1 is incurred.

Flow Cost Loss Delay Throughput
A ∞ 0.5% 1s 200kbps
B 5 3% 1s 360kbps
C 3 3% 0.3s 360kbps
D ∞ 3% 1s 360kbps

Table 1: Mission specifications of flows.

A total order of the flow starts and ends with the minimal
cost and its corresponding routes are given in Figure 2. We
also show the temporal constraints of the example in Fig-
ure 2. It can be easily verified that such a plan only violates

Flow-C, cost = 3
Route: 1 -> 2

Flow-B, cost = 5
Route: 1 -> 3 -> 2

Flow-A, cost = ∞
Route: 1 -> 2

Flow-D, cost = ∞
Route: 1 -> 3 -> 2

(0, 70], cost =1
[30, 60], cost = ∞

[30, 60], cost = ∞ [30, 60], cost = ∞
[20, ∞) ∨ (-∞, -20]

cost = ∞

2 3 4 1 5

Figure 2: Optimal solution of the motivating example.

the fourth temporal requirement with cost 1. Now we prove
this plan is optimal. Given the limited bandwidth constraints,
a network link can transfer at most one flow simultaneously.
By checking the loss and delay, we know the only feasible
route of Flow-A and Flow-C is Path 1-2, while Flow-B and
Flow-D can take either Path 1-2 or Path 1-3-2. From the
temporal requirements, we know Flow-B and Flow-C must
be concurrent, and Flow-A and Flow-D must be concurrent.
Furthermore, these two clusters cannot be concurrent, given
the limited network capacity, which leads to an 80-second
horizon and violates the fourth requirement. Therefore, there
is no plan to satisfy all the requirements, and the plan in Fig-
ure 2 that only violates one constraint with cost 1 is optimal.

As we can see, this problem involves managing network
flows with different priorities and multiple characteristics,
which is hard, especially when multiple flows are consid-
ered over a large network (Chen et al. 2018). The problem
becomes much harder when an exponential number of re-
laxation choices are considered to minimize total costs. We
show that our ordering method can efficiently find an op-
timal solution for this problem by interacting with proper
sub-solvers.

3 Problem Formulation
Based on the definitions of general ordering problems (Chen
et al. 2019), we associate each constraint with a real-valued
cost or an infinite cost, which is similar to the valued con-
straint satisfaction problems (Schiex et al. 1995), and the
optimal ordering problem is defined as a tuple 〈E,Φ, w, h〉:
• E is a set of n events represented by the natural numbers
{1, 2, .., n}.

• Φ is a set of constraints, consisting of a set of ordering
constraints Φ+ and a set of theory constraints Φ∗. An or-
dering constraint φ+ ∈ Φ+ is a disjunction of partial or-
ders. A partial order (a ≺ b) constrains a ∈ E to precede
b ∈ E. A theory constraint is a user-defined state or tem-
poral requirements across a set of events over time.

• w : Φ → R+ ∪ {∞} is a function that maps a constraint
φ ∈ Φ to a positive cost value g(φ). If w(φ) = ∞, φ is a
hard constraint; otherwise, φ is a soft constraint.

• h : L×2Φ → {>,⊥} is a function that maps a total order
L of E and a set of constraints Φ′ ⊆ Φ to a Boolean value
indicating the consistency of L with respect to Φ′.

A candidate solution of this ordering problem is a total
order L that is a sequence of all the events of E. Note that
we do not allow events to co-occur, and thus we require a
strict ordering such that ¬(a ≺ b) = (b ≺ a).

To define the solution consistency and optimality, we first
introduce the notions of constraint relaxation and the cost of
total orders with respect to its constraint relaxation. A set
of constraints Φ′ ⊆ Φ is a relaxation of Φ under total or-
der L if h(L,Φ/Φ′) = > (i.e., L is consistent with the rest
of the constraints). A trivial relaxation under any total order
is Φ, which means suspending all the constraints. A relax-
ation Φ∗ under L is an optimal relaxation if

∑
φ∈Φ∗ w(φ) ≤∑

φ∈Φ′ g(φ) holds for any relaxation Φ′ under L (i.e., the
cost sum of optimal relaxations is minimum). Formally, the
cost of L is denoted as g(L) and defined as

g(L) = min
(Φ′⊆Φ)∧h(L,Φ/Φ′)

∑
φ∈Φ′

w(φ).

Note that, g(L) is in the form of k∞+ c, where k is a non-
negative integer representing the total number of the relaxed
hard constraints and c is a real-valued number representing
the cost sum of the relaxed soft constraints. We treat (k∞+
c) as finite if k = 0.

A candidate solution L is a solution if and only if its cost
g(L) is finite. A solution L is an optimal solution if and only
if g(L) ≤ g(L′) holds for any solution L′.

We assume the cost evaluation function g is provided,
which can return the cost of a total order in terms of its op-
timal relaxation of Φ given consistency function h.

Our motivating example can be formulated as follows:

• E = {1, 2, 3, 4, 5} as shown in Figure 2.

• Φ+ = {o1, o2, o3, o4, o5}: o1 = (1 ≺ 5), o2 = (2 ≺ 3),
and o3 = (2 ≺ 4) constrain each flow’s start to precede
its end; o4 = (3 ≺ 5) and o5 = (4 ≺ 5) captures tem-
poral requirement (3). All of these constraints are hard
constraints with cost∞.

• Φ∗ = {t1, t2, t3, t4, t5} ∪ {s1, s2, s3, s4}: t1, t2 and t3
constrain the duration of each flow to be within [30, 60];
t4 and t5 captures temporal requirements (1) and (4), re-
spectively; {s1, s2, s3, s4} represents the state constraints
on routing, loss, delay, and bandwidth of each flow. All of
these constraints are hard constraints except w(t5) = 1,
w(s2) = 5, and w(s3) = 3.

• h is able to take as input a total order and determine
whether there exists a valid plan, which specifies flow
routing, bandwidth allocation, and schedules, satisfies the
given set of constraints and respects this total order. To
implement g for this domain, we use the network con-
figuration manager in (Chen et al. 2018) and the optimal
temporal network relaxation solver in (Yu and Williams
2013) to optimize the cost with respect to the state and
temporal constraints, respectively.

One optimal solution of the above problem is 23415 with
cost 1 by relaxing temporal constraint t5.

4 Approach
In this section, we present the design and implementation of
the GCDO algorithm, which adopts the well-known branch-
and-bound (B&B) search to systematically explore all the
total orders of events and find an optimal ordering solution
in an anytime manner. One core idea of B&B is to bound and
prune suboptimal solutions, which requires (1) estimating
the objective bounds of subsets of solution candidates; and
(2) pruning the suboptimal subsets given these estimations.

We leverage the following two ideas to pave the way for
cost estimation and pruning: (1) a well-defined tree struc-
ture for enumerating the set of total orders (Ono and Nakano
2005), such that total orders in a subtree have partial or-
ders in common; (2) bounding constraints that summarize
the cost of satisfying a set of partial orders and constraints.
With this tree structure and the bounding constraints, we can
estimate the cost bound of a total order or all the total orders
in a subtree by summing up the costs of their manifested
bounding constraints. By using bounding constraints to esti-
mate costs, GCDO avoids many expensive queries about the
exact costs of total orders from sub-solvers. Moreover, given
the cost estimation of subtrees, we can safely prune incon-
sistent or suboptimal ones by directly jumping over them.

By using GCDO, the optimal total order of our motivat-
ing example can be found in the third iteration as given in
Figure 3. GCDO starts with total order 12345, in which all
the flows transfer concurrently and leads to total order cost
8. Then, it identifies that by moving event 1 after event 3, the
next total order 23145 resolves this concurrency and reduces
the cost by 8. GCDO then checks 23145 and finds the con-
currency of Flow-A, Flow-C, and Flow-D leads to cost 3. By
moving 1 after 4, this concurrency is resolved, and we end
up with the optimal solution 23415 with cost 1, which only
needs to relax the overall makespan constraint t5. These con-
currencies are examples of bounding constraints, which are
partial orders and constraints that impose a certain cost when
satisfied. Then, GCDO takes another thirteen iterations to
prove this total order is optimal, during which GCDO mainly
uses the bounding constraints to estimate costs and only calls
cost evaluation function g once.

GCDO (Algorithm 1) takes as input the total number of
events n, a set of ordering constraints Φ+, a cost evaluation
function g, and a bounding constraint extraction function f .
GCDO outputs either ({},∞) or an optimal total order L∗
along with its cost γ∗ with respect to g (Line 18). Total or-
der L is initialized as the root total order (1, 2, .., n), and the
search status lc is set to 0 (Line 1). Then, Line 2 initializes
the incumbent total order L∗, the incumbent cost γ∗, and the
extracted bounding constraints Θ. Starting from (1, 2, .., n),
the algorithm explores all the total orders in a systematic
way and updates the incumbents when better solutions are
found (Line 8). We provide a high-level explanation to the
pseudo-code in the following four paragraphs and their im-
plementation details are introduced in the rest of Section 4.

Total Order Search Our algorithm follows a systematic
search strategy in the total order tree introduced by (Ono
and Nakano 2005). In each iteration, GCDO only maintains
one total order L and its search status lc, which is the level

12345

23145 1324523415 12435

24135 24315 14235

12453 12354

1*

2* 3*

4

5

6

7

8* 9

10

11

12 13

14

15

16

(1 3)

(3 4)

(2

 3
) (3

 4)

(4
 5)

(4 5)

(1 3)

(3 4)

(2
 3)

, ,
, ,

, , ,
 for under
 to resolve for cost 8

4
, ,

 for under
 to resolve for cost 8

6

, ,
 for under
 to resolve for cost 8

14

, ,
 for under
 to resolve for cost 8

16

, ,
 for under
 to resolve for cost

5 , ,
 for under
 to resolve for cost 8

7

, ,
 for under
 to resolve for cost 5

8*
, ,

 for under
 to resolve for cost 1

9 , ,
 for under
 to resolve for cost 8

10

, ,
 for under
 to resolve for cost

11
, ,

 for under
 to resolve for cost 8

12

, ,
 for under
 to resolve for cost

13

, ,
 for under
 to resolve for cost

15

, ,
 for under
 to resolve for cost 8

1*

, ,
 for under
 to resolve for cost 3

2*

, ,
 for under
 to resolve for cost 1

3*

Figure 3: The explored total orders when solving the motivating example by using GCDO. The levels of total orders and the
chosen next order move are in blue; all the bounding constraints are in the solid-line box; the bounding constraints that are
extracted by f during the search are in red; the manifested disjoint bounding constraints D, estimation cost γ, incumbent cost
γ∗, the standard order move, and the first reducing order move at each iteration are given in the dotted-line boxes; we add ∗ to
the iteration number if the exact cost is queried from the sub-solvers in that iteration.

of the latest visited children of L in the previous iterations.
Intuitively, the level of a total order is the first event that is
not in the right place compared to the same place as the root
total order. For example, 12435 has level 3. Line 9 calcu-
lates the standard order move to the next total order, which
is uniquely determined by L and lc. Here an order move is
an operation that right shifts the position of an event in a
total order. Then, GCDO either moves to the next total or-
der (Lines 13-14) or backtracks (Lines 16-17). The function
NEXTMOVE is implemented by Equation 1 in Section 4.1

Extracting Bounding Constraints The algorithm ex-
tracts a set of bounding constraints and adds them to Θ
(Line 7) when the true cost of a total order is queried
(Line 6). Each bounding constraint is a set of partial orders
and constraints that impose a certain amount of cost when
satisfied. An example bounding constraint is θ7 = (1 ≺
4) ∧ (2 ≺ 5) ∧ s1 ∧ s3 ∧ s4 with cost 3. As partial orders
(1 ≺ 4)∧(2 ≺ 5) force the concurrency of Flow-A, Flow-C,
and Flow-D, which cannot be transferred together, any total
orders that imply these partial orders will have to at least re-
lax constraint s3, which imposes cost 3. With bounding con-
straints Θ, we can estimate total order costs without using g
(Line 4) and jump further than the standard move to prune
inconsistent or suboptimal total orders (Lines 10-11). The
implementation of function INITCB and the method con-
struct bounding constraint extraction function f are intro-
duced in Section 4.2.

Estimating Total Order Costs At each iteration, we start
by calculating an optimistic cost estimation of L by using
bounding constraints Θ (Line 4). Our estimation method
combines multiple manifested bounding constraints of L to
determine an informative lower bound estimation while be-
ing optimistic. As using g to calculate the true cost of L
is computationally expensive (Line 6), we evaluate g(L)
only when the estimation is better than the incumbent cost
(Line 5). The function ESTIMATECOST is implemented by
Equation 4 in Section 4.3.

Algorithm 1: GCDO
Input: 〈n,Φ+, g, f〉
Output: (L∗, γ∗)

1 (L, lc)← ((1, 2, .., n), 0);
2 (L∗, γ∗,Θ)← ({},∞, INITBC(Φ+);
3 while L ! = {} do
4 γ ← ESTIMATECOST(Θ,L) ;
5 if γ < γ∗ then
6 γ ← g(L) ;
7 Θ← Θ ∪ f(L) ;
8 if γ < γ∗ then (L∗, γ∗)← (L, γ) ;

9 (i′ → j′)← NEXTMOVE(L, lc) ;
10 (i† → j†)← FIRSTREDUCING(L,Θ, γ∗) ;
11 if ni′ + j′ < ni† + j† then (i′ → j′)← (i† → j†);
12 if i′ < n then
13 lc ← 0 ;
14 L ← L⊕ (i′ → j′)
15 else
16 lc ← PLV(L) // position of level event

17 L ← PARENT(L) ;

18 return (L∗, γ∗);

Reduction-directed Order Moves With bounding con-
straints Θ, the GCDO algorithm computes the first reduc-
ing move, which is the first order move that jumps over the
inconsistent or suboptimal total orders with respect to the in-
cumbent γ∗ (Line 10). The order move is then used to update
the standard order move to jump further (Line 11). Find-
ing such order moves is based on the observation that some
partial orders, which manifest a set of bounding constraints
with a total cost larger than the incumbent, can be persis-
tent in some subtrees. Thus, these subtrees and total orders
can be pruned without impairing completeness or subopti-
mality. The function FIRSTREDUCING is implemented by
Equations 6-7 in Section 4.4.

4.1 Total Order Search
Now we introduce the total order tree (Ono and Nakano
2005) and a depth-first search strategy in this tree (Wang
2015). In the tree of events E = {1, 2, .., n}, nodes are total
orders of E, and an edge is an operation of altering partial
orders of a total order. This tree is rooted at the root total or-
der (1, 2, ..n) and constructed by expanding all the children
of each total order. The tree expansion uses the notions of
levels and order moves, which are defined as follows:

Definition 1 (Level). The level of a total order L =
(p1, p2, .., pn) 6= (1, 2, .., n) is the minimal integer l such
that pl 6= l. The level of (1, 2, .., n) is n.

Definition 2 (Order Move). An order move (i→ j) deletes
pi from a total order L = (p1, p2, .., pn) and inserts it right
after pj to obtain a total order L′. This operation is denoted
as L′ = L ⊕ (i→ j).

In this tree, we generate a child by right shifting an event
that is less than its parent level. To generate all the children
of a total order L with level, we apply L ⊕ (i → j) for
every i < l and i < j ≤ n. This tree exactly includes all
the total orders of a set of events, which is proved in (Ono
and Nakano 2005). The total order tree of E = {1, 2, 3, 4}
is given as an example in Figure 4.

As we can see, the total order level decreases from parents
to children. Meanwhile, since the total order tree constrains
the feasible order moves with respect to the total orders’
level, a portion of partial orders can be persistent in all the
total orders in a subtree, which is summarized as Lemma 1:

Lemma 1. For a total order with level l, order move can
only right shift i < l in its subtree, and the partial orders
between events {l, l + 1, .., n} remain in its descendants.

Based on this property, as long as we know the partial
orders that lead to inconsistency or suboptimality, we can
identify the subtrees that always have these partial orders,
which can be safely pruned.

To search this tree, we follow the depth-first order: (1)
from a total order, the algorithm first visits its children and
then its siblings with the same level; (2) when its children
and these siblings are exhausted, the algorithm backtracks to
its parent; (3) The group of children with the lowest level are
generated first, and within each group, children are gener-
ated in the order of right shifting children’s level events until
the right end; (4) the same-level siblings are also generated
by right shifting their level events until the right end. The
order of visiting all the total orders of four events is given in
Figure 4. Formally, from a total order L = (p1, p2, .., pn),
when its latest visited child has level lc, the next move
NEXTMOVE(i, j,L) is calculated as follows:{

(lc + 1→ lc + 2) (lc < l − 1)

(PLV(L)→ PLV(L) + 1) (lc = l − 1)
, (1)

where PLV(L) is the position of the level of L in itself. Note
that the feasible order moves under these two conditions lead
to the children of L and its siblings with level l, respectively.
By following Equation 1, (i → j) with lower (ni + j) is
taken first from a total order and (ni+j) ≤ (nl+n) holds for

1234

2134 2314 2341 1324 1342 1243

3214 32413124 3412 34213142 2413 24312143 14321423

4213 42314123 4312 43214132

(1	
	3)

(1	
	4)

(2
	

	3
) (2	

	4) (3	 	4)

(1	
	2)

(1	
	3)
(1	

	4)

(1	
	2)

(1
	

	3
) (1	

	4)

(1	 	2) (1	 	3) (1	
	4)

(1	
	2)

(1	
	3)

(1
	

	4
)

(1	
	2)

(1
	
	3)

(1	
	4)

(2	
	3)

(2	 	4)

1

2 3 4 6

7 8 9

11

12 13 14

17

18 19 20 22 27

23 24 25 28 29 30

5

10 15

16

21

26 31

32

33

Figure 4: Total order tree of E = {1, 2, 3, 4}. The levels of
total orders are in blue. The orderings of visiting these total
orders by following Equation 1 are given in their upper left.

the feasible order moves. Feasible order moves are simply
applied as Lines 13-14. When the returned move is (n →
n + 1), which is infeasible and means all the children and
same-level siblings are exhausted, the algorithm backtracks
to the parent of L (Lines 16-17).

4.2 Extracting Bounding Constraints
In this section, we introduce the formal definition of bound-
ing constraints and their extraction method. Intuitively, the
bounding constraints are a set of partial orders along with
the constraint that imposes a certain amount of cost when
satisfied, which are the generalization of ordering conflicts
to account for costs (Chen et al. 2019). They are also similar
in spirit to valued nogoods (Dago and Verfaillie 1996) and
bounding conflicts (Timmons and Williams 2020) by asso-
ciating partial assignments with objective value bounds, but
the bounding constraints are tailored to the ordering prob-
lems by replacing partial assignments with partial orders.

In our motivating example, Flow-A, Flow-C, and Flow-
D cannot be transferred concurrently because of the lim-
ited bandwidth capacity of the two available paths. When
a total order forces them to be concurrent, dropping Flow-C
is the optimal relaxation since the other flows have higher
priorities and thus higher costs to drop. As Flow-C starts
at 2 and ends at 4, and Flow-A and Flow-D start at 1 and
end at 5, this concurrency can be summarized as the par-
tial orders (1 ≺ 4) ∧ (2 ≺ 5), which compactly cap-
ture all the combinations of this concurrency: 1245, 1254,
2145, and 2154. As the state constraints of these flows
are {s1, s2, s3}, the fact that this concurrency imposes at
least cost 3 can be summarized as a bounding constraint
θ7 = (1 ≺ 4) ∧ (2 ≺ 5) ∧ s1 ∧ s3 ∧ s4 with cost 3.
Another bounding constraint example for state constraints is
θ6 = PO(θ6) = (1 ≺ 3)∧(1 ≺ 4)∧(2 ≺ 5)∧s1∧s2∧s3∧s4

with cost 1, which summarizes that the concurrency of all
the flows has cost 8 by relaxing Flow-B and Flow-C.

In addition to the bounding constraints for state con-
straints, a bounding constraint example of temporal con-
straints is θ8 = (3 ≺ 1) ∧ (4 ≺ 1) ∧ t1 ∧ t2 ∧ ∧t3 ∧ t4 ∧ t5
with cost 1, which is manifested by total order 23415 as in
Figure 2. As the partial orders (3 ≺ 1) ∧ (4 ≺ 1) force both
Flow-B and Flow-C to end before Flow-A and Flow-D start,
the mission takes at least 80 seconds given temporal con-
straints {t1, t2, t3, t4}, which contradicts with time limit 70

seconds specified by t5. As relaxing t5 will remove this time
limit with cost 1, which is the optimal relaxation since the
other involved constraints are hard constraints, this bound-
ing constraint has cost 1.

The third kind of bounding constraints is for ordering
constraints, which is simpler than those for state and tem-
poral constraints. For example, total order 12453 includes
partial order (5 ≺ 3) and violates the ordering constraint
o4 = (3 ≺ 5) with cost∞, which can be summarized as a
bounding constraint θ4 with cost∞. Formally, we define the
bounding constraints as follows:
Definition 3 (Bounding Constraints). Let Φ be a set of
constraints. A bounding constraint θ associated with cost
COST(θ) is a conjunction of a set of partial orders PO(θ)
and a set of constraints CS(θ) ⊆ Φ such that COST(θ) is the
cost sum of the optimal relaxation of CS(θ) under PO(θ).
We say a total order L manifests θ if L implies PO(θ).

For ordering constraint φ+
r = ∨qrs, where qrs is a par-

tial order, we can obtain its corresponding bounding con-
straint θr by having PO(θr) = ∧qrs, CS(θr) = {φ+

r }, and
COST(θr) = w(or). As this procedure is easy, we extract
the bounding constraints for all the ordering constraints Φ+

before search, which is implemented as function INITBC.
Now we introduce our method to construct bounding

extraction function f , which finds PO, CS, and COST of
bounding constraints for state and temporal constraints.
First, we extract PO for state and temporal constraints by
using the same approach to extract ordering conflicts as
(Chen et al. 2019): we represent the concurrency of state
constraints as a polynomial number of partial orders; and
we obtain the partial orders that are inconsistent with a set
of temporal constraints by collecting the imposed partial or-
ders in their negative cycle (Dechter, Meiri, and Pearl 1991).
They are given in Equation 2 and Equation 3, respectively.

The partial orders POs to present the concurrency of mul-
tiple state constraints are:

POs = ∧
i,j
Rsij = ∧

i,j
(x`i ≺ xaj). (2)

where each Rsij = (x`i ≺ xaj) ∧ (x`j ≺ xai) represents the
concurrency of two tasks (i.e., state constraints), and x`i and
xai are the start and end events of the ith task.

When a negative cycle in a simple temporal network is
found, the corresponding partial orders POt are:

POt = ∧
i
Rti = ∧

i
(x−i ≺ x

+
i), (3)

where Rti = (x−i ≺ x+
i) represents the from event and to

event of a temporal constraint that is involved in the cycle
and added because of total ordering.

Then, CS in these two cases are the concurrent state con-
straints and all the temporal constraints involved in the neg-
ative cycle, respectively. Lastly, COST can be obtained by
associating the state and temporal constraints with costs and
solving an optimization problem for an optimal relaxation.
In our example, we use the solvers in (Chen et al. 2018) and
(Yu and Williams 2013) to find the optimal relaxation with
respect to the state and temporal constraints, respectively,
and COST is the cost sum of the relaxed constraints.

4.3 Estimating Total Order Costs
Given a set of bounding constraints Θ manifested by a total
order L, we can calculate γΘ, an optimistic, informative cost
estimation of L by using Θ instead of evaluating the exact
cost g(L). The latter usually requires solving complex op-
timization problems, which is more computationally expen-
sive and should be avoided as much as possible. For exam-
ple, without using g, we know the costs of total orders that
manifest θ6 with PO(θ6) = (1 ≺ 3) ∧ (1 ≺ 4) ∧ (2 ≺ 5)
such as 12435 and 12453 are at least 8.

An informative cost estimation of a total order should be
as large as possible to lower bound its true cost. To be in-
formative, we want to incorporate the information of mul-
tiple bounding constraints. For example, total order 12453
manifests both bounding constraints θ5 with cost∞ and θ6

with cost 8. Therefore, the cost estimation of 12435 is lower
bounded by (∞+ 8) by summing their costs together.

Meanwhile, we still require the estimation to be optimistic
when considering multiple bounding constraints. An opti-
mistic cost estimation is a lower bound of the true cost. Thus,
the constraint sets of the used bounding constraints should
neither count the costs of unnecessary relaxations nor double
count same relaxations. For example, total order 12435 man-
ifests both bounding constraints θ7 with cost 3 and θ6 with
cost 8. An optimistic cost estimation of 12435 is 8, which is
determined by θ6 instead of counting both θ7 and θ6. This is
because they share s3 (i.e., Flow-C) in their optimal relax-
ation, and its cost should be counted only once. We choose
θ6 with a higher cost to get a closer bound to its true cost.

Disjoint Bounding Constraints Formally, when we use
the cost sum of multiple bounding constraints to obtain an
informative estimation, the key to being optimistic is to use
a set of disjoint bounding constraints, which is formally de-
fined as follows:
Definition 4 (Disjoint Bounding Constraints). Two bound-
ing constraints θi and θj are disjoint if the intersection of
their constraint sets CS(θi)∩CS(θj) only include hard con-
straints.

Given a set of disjoint bounding constraints D mani-
fested by total order L, we can estimate the cost of L as∑
θr∈D COST(θr). Based on Definition 4, we conclude the

optimism of this estimation in Lemma 2.
Lemma 2. Let L be a total order with cost γ and D be a
set of disjoint bounding constraints manifested by L. Let∑
θr∈D COST(θr) = k∞ + c be a cost estimation of L. If

k = 0, we have c ≤ γ; otherwise, γ ≥ ∞.

Proof. When k = 0 for k∞ + c, the estimation is opti-
mistic because: given any two disjoint bounding constraints
θi and θj , we know the intersection of their constraint sets
CS(θi) ∩ CS(θj) have only hard constraints, and thus soft
constraints can not appear in the intersection of their relax-
ations. Therefore, the choice of the optimal relaxation for
each bounding constraint over a set of soft constraints is
independent and thus remains optimal. When k > 0 for
k∞ + c, there must be a bounding constraint with cost ∞,
which is manifested by total order L, and thus L must be
inconsistent and has at lest cost∞.

Finding Informative Optimistic Estimation Given a set
of bounding constraints Θ manifested by total order L, we
calculate an informative estimation γΘ by choosing a set of
disjoint bounding constraints D with the maximal cost sum:

γΘ = max
(D⊆Θ)∧(D is disjoint)

∑
θr∈D

COST(θr) (4)

As an implementation of ESTIMATECOST, we find such
disjoint bounding orderings D ⊆ Θ and its cost γΘ by
solving a weighted maximum clique problem (Bomze et al.
1999), which is NP-hard but can be solved very efficiently
in practice (Cai and Lin 2016; Balas and Xue 1996). We
first construct an undirected graph: the vertices are bound-
ing constraint Θ, the weight of each vertex θ ∈ Θ is
COST(θ), and there is an undirected edge between two ver-
tices θi, θj ∈ Θ if and only if they are disjoint as given in
Definition 4. A clique D is a subset of vertices such that
every two distinct vertices in this clique are adjacent, and
a maximum clique is not a subset of any other clique. In
the graph, each maximum clique D represents a set of dis-
joint bounding constraints. To be informative, we choose the
clique with the maximum cost sum to have a tight bound.

4.4 Reduction-directed Order Moves
In this section, we introduce the method to find the next or-
der move that jumps over inconsistent or suboptimal total or-
ders given the incumbent cost. We first introduce our method
to find the first resolving move of a bounding constraint θ,
before which any total order still manifests θ and thus has at
least cost COST(θ). By using these first resolving moves, we
identify the first reducing move of a desired cost reduction,
before which any total order still manifests a set of bounding
constraints and is inconsistent or suboptimal.

First Resolving Move To find the first resolving move of
a bounding constraint, we use the same method as resolving
ordering conflicts in (Chen et al. 2019), which is based on
Lemma 1 and finds the first order move that leads to a total
order negating at least one partial order in its partial orders.

Consider total order 12453 that manifests bounding con-
straints {θ4, θ6} in the thirteen iteration. We consider finding
the first resolving move of one of its bounding constraints,
θ6, as an example. From 12453, the standard next move cal-
culated by Equation 1 is (1→ 2) and leads to 21435, which
still implies PO(θ6) = (1 ≺ 3) ∧ (1 ≺ 4) ∧ (2 ≺ 5). To
resolve θ6, we should jump over 21453 and directly move to
24153 through order move (1→ 3), which negates (1 ≺ 4)
in PO(θ6) and can reduce COST(θ6). Thus, (1 → 3) is the
first resolving move of θ from 12453. While any order move
before (1 → 3) is nonhelpful, the order moves after it may
also resolve θ6 . For example, (1 → 4) moves to 24513,
which negates both (1 ≺ 3) and (1 ≺ 4). Another exam-
ple is (2 → 3). Even though the new total order 14253 still
implies PO(θ6), its subtree may contain total orders that re-
solve θ6 such as taking (1→ 2) in subsequent.

We return infeasible moves (n → n + 1) when there is
no total order that resolves the bounding constraint among
the descendants of the current total order, its same-level sib-
lings, and the descendants of these siblings. Consider the

other bounding constraint θ4 manifested by 12453. As the
level of 12453 is 3, the feasible order moves from 12453 can
only right shift events 1 or 2 to generate its children or right
shift 3 to generate its siblings. However, 3 has reached the
right end, and right shifting 1 or 2 does not change partial
order PO(θ4) = (5 ≺ 3). Moreover, the levels of the new
total orders obtained by shifting 1 or 2 are no more than 2,
and thus there is no chance to negate (5 ≺ 3) in the follow-
ing moves by Lemma 1. Thus, the first resolving move of θ4

is (5→ 6), which means backtrack.
Formally, consider a bounding constraint θr with par-

tial orders PO(θr) = ∧
s
qrs manifested by total order L =

(p1, p2, ..., pn) with level l. The first resolving order move
of θr from L is

(i†r → j†r) = argmin
(i′→j′)∈Πr

(ni′ + j′), (5)

where Πr = {(i′ → j′) | ((pi′ ≺ pj′) ∈ PO(θr)) ∧ (pi′ ≤
l)} ∪ {(n → n + 1)}. Order move (n, n + 1) is infeasible
and means GCDO should backtrack as in Equation 1.

First Reducing Move Let ∆ = γD − γ∗ be the gap
between an optimistic cost estimation γD given disjoint
bounding constraints D and the incumbent cost γ∗. We
need to find the first order move that resolves a set of
bounding constraints D′ ⊆ D with enough cost reduction∑
θ∈D′ COST(θ) such that

∑
θ∈D′ COST(θ) > ∆. The first

order move to achieve this reduction ∆ is called the first
reducing move of ∆ from L given D. From another per-
spective, any order move that is before this move must lead
to the total orders whose costs are at least γ∗ and thus not
worth exploring.

In our previous example, we consider total order 12453
with manifested disjoint bounding constraints {θ4, θ6} and
incumbent cost 1 in the thirteen iteration. The first resolving
move of θ4 and θ6 are (1 → 3) and (5 → 6), respectively.
Recall that any order move before the first resolving move
of a bounding constraint will lead to a subtree where this
bounding constraint remains. Thus, as we identify reducing
cost from∞+ 8 to be less than incumbent γ∗ = 1 requires
resolving both constraints, we choose the order move that
jumps furthest, which is (5 → 6) in this example. Thus, the
search can safely backtrack by considering these two bound-
ing constraints together.

To identify the first reducing move of incumbent cost γ∗
from L as an implementation of function FIRSTREDUCING,
we start by calculating the first resolving move (i†r → i†r)
of each bounding constraint θr ∈ D. Then, we sort all these
resolving moves in the order of increasing (ni†r + i†r), which
is the exploration order of the order moves as given in Equa-
tion 1. We also associate every move with a cost estimation
GDr , which is as follows:

GDr =
∑

k∈{r+1,r+2,..R}

COST(θk), (6)

where R is the number of all the bounding constraints D.
This cost estimationGDr is the cost sum of all the unresolved
bounding constraints of (i†r → i†r) from the current total
order, which is optimistic following Lemma 2. Therefore,

#flows GCDO CDITO MILP
t1 γ1 γ η ζ t1 γ1 γ η ζ t1 γ1 γ η

5 0.029 2.30 0 100 0.087 0.020 2.30 0 100 0.763 0.062 4 0 100
10 0.043 2.87 0.43 81 0.086 0.036 2.87 1.52 9 0.751 0.273 8 0.73 74
15 0.096 3.96 0.41 80 0.043 0.089 3.96 3.04 3 0.727 1.055 12 1.14 41
20 0.172 5.18 0.47 77 0.008 0.153 5.18 4.27 0 0.706 1.791 16 1.09 52
25 0.301 6.12 0.49 73 0.006 0.229 6.12 5.24 0 0.681 3.516 20 1.33 47
30 0.460 7.24 1.53 57 0.004 0.317 7.24 6.54 0 0.676 4.949 24 1.95 19

Table 2: Experimental results. t1: the average runtime to find the first solution; γ1: the average cost of the first solution; γ: the
average cost of the returned solutions. η: the number of the problems whose returned solutions are optimal. ζ: the ratio of the
average times of calls to g to the average number of the explored total orders. We highlight the best results of t1, γ, and η.

if an order move is before (i†r → j†r) and GDr−1 > γ∗, it
must lead to a total order or a subtree that is inconsistent or
suboptimal, which can be safely pruned. Given the current
incumbent cost γ∗, we identify the next resolving move to
reduce the cost to be under γ∗ as follows:

(i† → j†) = arg min
(i
†
r→i

†
r)∧GD

r <γ
∗
(ni†r + j†r). (7)

5 Experimental Results
In order to evaluate the effects of using bounding constraints
in GCDO, we benchmarked GCDO on the optimal tempo-
ral network configuration problems similar to our motivat-
ing example, with different complexities and sizes. These
problems involve routing flows and allocating bandwidth re-
sources with respect to requirements on loss, delay, band-
width against CDITO (Chen et al. 2019) and Mixed Lin-
ear Inter Programming (MILP) approach by using Gurobi
(Gurobi Optimization 2021). CDITO can interact with a rich
class of sub-solvers as our algorithm does. As CDITO is
only aware of hard constraints to resolve ordering conflicts,
we modified CDITO to keep exploring the solution space af-
ter finding the first solution and record the best solution as
the incumbent. For both CDITO and GCDO, we use (Chen
et al. 2019) and (Yu and Williams 2013) as sub-solvers for
state and temporal constraints, respectively. The MILP en-
coding uses Boolean variables to indicate the precedence
relations of events, and constraints and violating costs are
conditional on these variables.

We use the same communication network simulator in
(Chen et al. 2018) to generates network flow requirements
on a meshed network. The major difference is that we asso-
ciate each flow with a priority to be its relaxing cost. While
one-fifth of the flows must be transferred, the relaxing costs
of the others are 1. The other setup is as follows: (1) the mis-
sion horizon is 300s; (2) the meshed network has 6 nodes;
(3) the loss, delay, and bandwidth of each link are uni-
formly generated from intervals [0.1,0.3]%, [0.1,0.3]s, and
[500,1000]kbps; (4) the loss, delay, throughput, minimum
duration of each network flow are uniformly generated from
[0.1,0.3]%, [0.1,0.3]s, [600,1000]kbps, and [20,80]s; (5) the
generator adds temporal constraints between randomly cho-
sen events with a duration (0,100], and the number of tem-
poral constraints is one-fifth of the number of flows;

We tested six scenarios of 5, 10, 15, 20, 25, and 30 flows
with 100 trials each. The timeout was 30 seconds. We only
include the trials in which consistent solutions exist.

Table 2 shows the experimental results. We observe that
all GCDO and CDITO can find consistent solutions ten
times faster than MILP. As GCDO reduces to CDITO be-
fore an incumbent solution is found except recording bound-
ing constraints, their first solutions are exactly the same, and
GCDO spends slightly more time on recording these con-
straints. In the first solutions, MILP basically drops all the
optional flows. It can be seen that while GCDO then reduces
at least 80% costs for most of the scenarios, CDITO can
only achieve good final cost γ when #flow ≤ 10 and fails
to achieving more than 20% reduction for the other scenar-
ios in 30s. This demonstrates that GCDO is capable of using
suboptimality to efficiently guide the search for high-quality
solutions. Meanwhile, the costs of the solutions returned by
GCDO is at lest half of that of MILP for most cases. We
also report η , the number of problems in which an optimal
solution is proved, which requires the algorithms to exhaust
the solution space. As GCDO is able to prove the optimal-
ity of the returned solutions for a large portion of problems
in 30 seconds, CDITO fails to complete this task for most
problems and MILP only performs well when #flow ≤ 10.
The calls to the sub-solvers dominate the runtime for both
CDITO and GCDO given our observation that more than
95% runtime is spent on these calls. The major reason for
GCDO being efficient is the use bounding constraints to es-
timate costs and jump over suboptimal total orders without
explicitly calling sub-solvers. This can be seen from that the
ratios ζ of GCDO and CDITO differ by two or three orders
of magnitude, which means GCDO avoids a large number
of unnecessary calls to the evaluation function and instead
focuses on thoroughly exploring the solution space.

6 Conclusion
In this paper, we presented GCDO, a generalized conflict-
directed search algorithm that efficiently solves the optimal
ordering problems with tightly coupled temporal and state
constraints. GCDO adopts the branch-and-bound to search
a special total order tree and generalizes the ordering con-
flicts in CDITO to bounding constraints, which can summa-
rize both inconsistency and suboptimality. Thus, GCDO is
able to efficiently prune the inconsistent or suboptimal to-
tal orders and thus avoids expensive and unnecessary calls
to the sub-solvers. In our experiments on optimal temporal
network configuration problems generated by a communica-
tion network simulator, we empirically demonstrate the effi-
ciency of GCDO over CDITO and a MILP encoding.

Acknowledgments
This work at Massachusetts Institute of Technology was
supported by Kawasaki Heavy Industries, Ltd (KHI) under
grant number 030118-00001. This article solely reflects the
opinions and conclusions of its authors and not KHI or any
other Kawasaki entity.

References
Balas, E.; and Xue, J. 1996. Weighted and unweighted maximum
clique algorithms with upper bounds from fractional coloring. Al-
gorithmica 15(5): 397–412.

Bomze, I. M.; Budinich, M.; Pardalos, P. M.; and Pelillo, M. 1999.
The maximum clique problem. In Handbook of combinatorial op-
timization, 1–74. Springer.

Cai, S.; and Lin, J. 2016. Fast Solving Maximum Weight Clique
Problem in Massive Graphs. In IJCAI, 568–574.

Chen, J.; Fang, C.; Muise, C.; Shrobe, H.; Williams, B. C.; and
Yu, P. 2018. RADMAX: Risk And Deadline Aware Planning for
Maximum Utility. In AAAI Workshop on Artificial Intelligence for
Cyber Security (AICS’18).

Chen, J.; Fang, C.; Wang, D.; Wang, A.; and Williams, B. 2019. Ef-
ficiently Exploring Ordering Problems through Conflict-Directed
Search. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 29, 97–105.

Dago, P.; and Verfaillie, G. 1996. Nogood recording for valued
constraint satisfaction problems. In Proceedings Eighth IEEE In-
ternational Conference on Tools with Artificial Intelligence, 132–
139. IEEE.

De Moura, L.; and Bjørner, N. 2008. Z3: An efficient SMT solver.
In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, 337–340. Springer.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint net-
works. Artificial intelligence 49(1-3): 61–95.

Gurobi Optimization, I. 2021. Gurobi optimizer reference manual.
http://www.gurobi.com. Accessed: 2021-2-17.

Lawler, E. L.; and Wood, D. E. 1966. Branch-and-bound methods:
A survey. Operations research 14(4): 699–719.

Manne, A. S. 1960. On the job-shop scheduling problem. Opera-
tions Research 8(2): 219–223.

Ono, A.; and Nakano, S.-i. 2005. Constant time generation of linear
extensions. In FCT, 445–453. Springer.

Schiex, T.; Fargier, H.; Verfaillie, G.; et al. 1995. Valued constraint
satisfaction problems: Hard and easy problems. IJCAI (1) 95: 631–
639.

Sebastiani, R.; and Trentin, P. 2020. OptiMathSAT: A tool for opti-
mization modulo theories. Journal of Automated Reasoning 64(3):
423–460.

Timmons, E. M.; and Williams, B. C. 2020. Best-First Enumeration
Based on Bounding Conflicts, and its Application to Large-scale
Hybrid Estimation. Journal of Artificial Intelligence Research 67:
1–34.

Wang, D. 2015. A Factored Planner for the Temporal Coordination
of Autonomous Systems. Ph.D. thesis, Massachusetts Institute of
Technology.

Wang, D.; and Williams, B. 2015. tBurton: A Divide and Conquer
Temporal Planner. In Twenty-Ninth AAAI Conference on Artificial
Intelligence.

Yu, P.; and Williams, B. C. 2013. Continuously relaxing over-
constrained conditional temporal problems through generalized
conflict learning and resolution. In Twenty-Third International
Joint Conference on Artificial Intelligence.

