
Optimal Mixed Discrete-Continuous Planning
for Linear Hybrid Systems

Jingkai Chen

jkchen@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Brian C. Williams

williams@csail.mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

Chuchu Fan

chuchu@mit.edu

Massachusetts Institute of Technology

Cambridge, MA, USA

ABSTRACT
Planning in hybrid systems with both discrete and continuous con-

trol variables is important for dealing with real-world applications

such as extra-planetary exploration and multi-vehicle transporta-

tion systems. Meanwhile, generating high-quality solutions given

certain hybrid planning specifications is crucial to building high-

performance hybrid systems. However, since hybrid planning is

challenging in general, most methods use greedy search that is

guided by various heuristics, which is neither complete nor optimal

and often falls into blind search towards an infinite-action plan. In

this paper, we present a hybrid automaton planning formalism and

propose an optimal approach that encodes this planning problem as

a Mixed Integer Linear Program (MILP) by fixing the action number

of automaton runs. We also show an extension of our approach

for reasoning over temporally concurrent goals. By leveraging an

efficient MILP optimizer, our method is able to generate provably

optimal solutions for complex mixed discrete-continuous planning

problems within a reasonable time. We use several case studies to

demonstrate the extraordinary performance of our hybrid plan-

ning method and show that it outperforms a state-of-the-art hybrid

planner, Scotty, in both efficiency and solution qualities.

CCS CONCEPTS
• Computing methodologies→ Robotic planning.

KEYWORDS
Linear Hybrid Systems, Hybrid Planning, Optimization

ACM Reference Format:
Jingkai Chen, Brian C. Williams, and Chuchu Fan. 2021. Optimal Mixed

Discrete-Continuous Planning for Linear Hybrid Systems. In 24th ACM
International Conference on Hybrid Systems: Computation and Control (HSCC
’21), May 19–21, 2021, Nashville, TN, USA.ACM, NewYork, NY, USA, 12 pages.

https://doi.org/10.1145/3447928.3456654

1 INTRODUCTION
Hybrid systems are a powerful modeling framework to capture both

the physical plants and embedded computing devices of complex

cyber-physical systems. When planning the desired behaviors of a

hybrid system, we have to consider both the discrete actions taken

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HSCC ’21, May 19–21, 2021, Nashville, TN, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8339-4/21/05.

https://doi.org/10.1145/3447928.3456654

Ground

Basin

Forbidden
Area

(Obstacle)

Mountain

Base

Figure 1: Map of Mars.

Ground Mountain

Charge Station
(10, 10)

Rover
(25, 5)

Astronaut
(35, 10)

Destination
(45, 5)

Figure 2: Example ofMars transportation problems: the charge sta-
tion is marked as ⊲, and its position is at (10,10); the rover ◦ is at
(25,5); the astronaut ⋄ is at (35,10); and the destination 2 is at (45,5).
In the example solution, the rover path is in red, the astronaut walk-
ing path is in blue, and the astronaut taking a ride is in green.

by the computing units and the continuous control inputs for the

physical actuators. This poses unique and significant challenges

in planning for hybrid systems, as one has to consider the change

of dynamics of the continuous flow by the control inputs, the in-

terleaves of continuous flows and the discrete transitions between

modes, resets associated with transitions, and concurrently running

agents in multi-agent systems.

Planning mixed discrete-continuous strategies in hybrid systems

is theoretically difficult: on the discrete side, planning with numeric

state variables has been proved to be undecidable [26]; on the con-

tinuous side, computing the exact unbounded time reachable states

for hybrid systems is also a well-known undecidable problem [27].

Nevertheless we are interested in high-quality solutions with the

shortest makespan or lowest energy consumption, which is crucial

to designing high-performance systems.

Motivating Example. Consider a task where an astronaut should

go to an observation location by crossing different terrains (e.g.,

mountain, ground, and basin) on Mars, and a rover needs to go to

the charge station, as shown in Figure 2. The astronaut can either

walk or take a rover. The moving speed of the rover is much faster

than the walking speed of the astronaut. The rover is powered by

a battery. This battery can be charged when the rover is stopped

https://doi.org/10.1145/3447928.3456654
https://doi.org/10.1145/3447928.3456654

in a charge station and should always have the remaining battery

outside of the charge station. While the rover and astronaut should

not enter the forbidden areas, the rover can move through different

terrains with different velocity limits and energy consumption rates.

After the rover is manually shut down, it cannot restart within 1

minute. In this mission, plans with shorter makespans are preferred.

A sound solution to this problem is that the astronaut moves di-

rectly to the destination, and the rover moves directly to the charge

station without picking up the astronaut. However, in this plan, the

rover is not used at all. If the rover has enough battery, it can de-

liver the astronaut to the destination first and then go to the charge

station, which saves a lot of time for the astronaut. Unfortunately,

energy is always limited in reality. Intuitively, a better solution is

that while the astronaut is moving towards the rover, the rover

moves to the charge station for charging, then picks up and delivers

the astronaut to the destination, and finally returns to the charge

station. As the rover moves much faster than the astronaut, this

plan requires much less time than letting the astronaut walk to the

destination. Another possible faster solution is that the rover picks

up and delivers the astronaut somewhere midway to the destina-

tion. Then, the astronaut walks to the destination while the rover

is moving back to the charge station for a charge.

In this paper, we adopt the hybrid I/O automaton [42] framework

to model the mixed discrete-continuous planning problems, which

is expressive enough to capture all the mentioned features such as

discrete and continuous input and state variables, linear dynamics

for continuous flows, and guards and resets for discrete transitions.

The crucial technique to make the mixed discrete-continuous op-

timal planning possible is the introduction of finite-step runs. A

step is defined either as a discrete jump or as a set of continuous

flows in a mode where we need to compute the dwell time for stay-

ing in this mode. We prove that the optimal solution (also called a

run) with finite steps will converge to the optimal solution of the

original hybrid system when the number of steps goes to infinity.

By tailoring the automaton to admit only finite-step runs, we show

that finding the optimal input such that the corresponding run has

a minimum makespan can be encoded as a Mixed Integer Linear

Program (MILP), which can be solved efficiently using off-the-shelf

MILP solvers, such as Gurobi [25].

To encode our mixed discrete-continuous planning problem as a

MILP, we draw inspiration from the idea of modeling flow tubes [31]

as linear programs [14]. We further extend these linear programs

to incorporate discrete decisions to model discrete variables and

actions. Our complexity analysis shows that the number of MILP

variables and constraints at each step increases linearly with the

product of the number of linear constraints in each condition and

the number of operators and variables. To accelerate MILP solving,

we introduce two types of additional constraints about conflicting

operators. We also show that our solution approach is able to plan

for the temporally concurrent goals known as Qualitative State

Plans (QSPs) [30], which describe the desired system behavior over

continuous time as tasks with time windows.

To demonstrate the efficiency and solution qualities of ourmethod,

we benchmarked against Scotty [14] on three domains: Mars trans-

portation, air refueling, and truck-and-drone delivery. In addition

to dealing with different dynamics under a large number of modes,

all these three domains require judiciously coordinating heteroge-

neous agent teams for cooperation and carefully reasoning over

resources to decide necessary recharging or refueling. The experi-

mental results show that our approach can find high-quality solu-

tions for all the problems in seconds and provide optimality proof

for most examples, while Scotty fails to solve half of the problems

within 600 seconds. Moreover, the makespans of our first solutions

returned within 1 second are already better than those of Scotty,

and our final solutions can significantly improve them.

The remainder of this paper is organized as follows. We start

by discussing the related work in both planning and controller

synthesis (Section 2). In Section 3, we give the formal definition of

our hybrid planning problem as well as a formulation of our moti-

vating example. In Section 4, we introduce a tractable variant of the

hybrid planning problem by fixing the action number of automaton

runs, which leads to a finite-step linear hybrid planning problem.

In Section 5, we present our MILP encoding of this finite-step linear

hybrid planning problem. Then, we introduce our extension to deal

with temporally concurrent goals in Section 6. Section 7 shows the

results of benchmarking our method against the Scotty Planning

system on three challenging domains. Finally, concluding remarks

are discussed in Section 8.

2 RELATEDWORK
Planning [1, 4, 6, 10, 14, 41] and controller synthesis [11, 24, 28, 35,

35, 44, 47, 50–52, 54–56] methods intersect at finding the (optimal)

strategies for various systemmodels with respect to different system

specifications. In what follows, we briefly mention a couple of

representative approaches that are related, without exhaustively

listing all approaches in each category.

Discrete abstraction-based synthesis. Discrete abstraction-based
synthesis methods first compute a discrete, finite-state abstraction

of control systems and then synthesize discrete controllers based on

automaton theories or two-player games [24, 35, 35, 44, 50, 55, 56].

Synthesis tools based on abstraction such as CoSyMA [45], Pes-

soa [48], LTLMop [36, 54], Tulip [15, 56], and SCOTS [49] can

support complex nonlinear systems, stochastic uncertainties, or

non-deterministic transitions [16, 40, 46, 49, 53, 57], and general

GR(1) [57] or Signal Temporal Logic [47] specifications. Our prob-

lemmay be solved using abstraction-based synthesis using temporal

logic specifications. However, none of the above tools can be used

directly on our general linear hybrid system with both discrete

input/state signals and guards/resets in transitions. Moreover, our

approach aims at finding high-quality solutions with low costs or

high rewards over long horizons instead of finding all valid so-

lutions. In fact, our planning approach is efficient and effective

at finding high-level plans, which is complementary and can be

combined with the controller synthesis algorithms for achieving

autonomy in complex hybrid systems.

Sampling-based planning. Sampling-based methods such as Prob-

abilistic Roadmaps (PRM) [34], Rapidly-exploring Random Tree

(RRT) [37], Fast Marching Tree (FMT) [32], and hybrid automata

planner [39] are widely used for searching for plans in nonconvex,

high-dimensional, and even partially unknown environments. Re-

searchers also combine the PRM sampling method with classical

planning for solving task-and-motion planning problems, which

involves both continuous motions and discrete tasks [21–23, 33, 38].

Compared with the deterministic guarantees provided by controller

synthesis methods and our approach, these methods come only

with probabilistic guarantees.

Hybrid planning. The planning problems with a subset of the

features considered in this paper (i.e., mixed discrete-continuous

models, continuous control variables, autonomous transitions, indi-

rect effects, and concurrency) can be of the categories PDDL2.1[17],

PDDL-S [14], or PDDL+[18]. Some SMT-based PDDL+ planners

such as SMTPlan+ [6] and dReal [5] are complete given a finite num-

ber of fixed time steps. However, PDDL+ does not support control

variables and these planners solve different problems from ours. As

most of the solution approaches to PDDL2.1 and PDDL-S [9, 13, 29]

use greedy search methods such as the enforced-hill climbing, they

are neither complete nor optimal even with finite steps. Moreover,

most of their heuristics belong to the Metric-FF family [29], which

are known to suffering from resource persistence or cyclical re-

source transfer [8] when indirect effects or obstacles are present.

Thus, none of these heuristics can handle all of these problem fea-

tures and often lead the greedy search to be blind in certain domains.

These motivate us to develop an effective method that is guaranteed

to provide high-quality solutions for mixed discrete-continuous

planning problems with various features.

Note that hybrid planning problems are closely related to the

formalism of hybrid automata studied in model checking [27, 42],

which can be found in [18]. In addition, researchers put many efforts

into translating PDDL+ to hybrid automata [2, 3], which leverages

the advanced hybrid model checking tools [7, 19, 20] to efficiently

prove plan non-existence. Our method directly plans for hybrid

automata instead of any PDDL extension. These two representa-

tions can be translated to each other since snap actions are basically

jumps, and the overall conditions and effects of durative actions

are basically flows. By using jumps and flows instead of durative

actions, we are able to have a clean MILP encoding for hybrid

planning problems.

Among all the hybrid extensions of PDDL, the problems this

paper aims at are most relevant to PDDL-S since it is the only

planning formalism that supports continuous control variables

over time [14]. Kongming [41] is the first planner that is able to

solve PDDL-S, and then a more scalable planner Scotty [14] was

developed. Scotty is able to efficiently solve complex underwater

exploration problems, and it is the current state-of-the-art PDDL-S

planner. The reasons for its efficiency are: (1) Scotty encodes the

cumulative effect of each control variable as a single variable, which

renders a clean convex optimization problem for plan validation,

which are called flow tubes [31]; (2) It uses the temporal relaxed

planning graph heuristics (i.e., delete relaxation) [9] to guide its

greedy search. Our method is inspired by its cumulative effect

encoding and extends its optimization problem to handle discrete

decisions and nonconvex conditions. By using such an encoding, we

do not need to discretize the timeline with a fixed time step as [41]

or discretize control parameters as [9]. Meanwhile, our solution

approach avoids the incompleteness and suboptimality caused by

Scotty’s greedy search.

3 PROBLEM FORMULATION
We use a linear hybrid automaton with inputs as the model for

our system and then define the hybrid planning problem on this

automaton.

Definition 3.1 (Linear Hybrid Automaton). A linear hybrid au-

tomaton with inputs is a tupleℋ = ⟨𝑉 = (𝑄 ∪ 𝐸), 𝑞Init, Goal, 𝐽 , 𝐹 ⟩:
• 𝑄 = 𝐿 ∪ 𝑋 is the set of internal variables, which are also

called state variables. 𝐿 is the set of discrete state variables,

the values of which val(𝐿) are taken from finite sets called

modes. 𝑋 is the set of continuous state variables, the values

of which val(𝑋) are taken from continuous sets over the

reals. We call val(𝐿) = val(𝐿) × val(𝑋) internal state space.
• 𝐸 is the set of external variables, which are also called input
variables. External variables could also contain discrete and

continuous variables, which are defined analogously to the

internal variables.

• 𝑞Init ∈ val(𝐿) × val(𝑋) is an initial state, and Goal is a

predicate that represents a set of goal states.

• 𝐽 is the set of jumps. A jump 𝑗 ∈ 𝐽 is associated with a condi-
tion cond and an effect eff. The condition cond is a predicate
over 𝑉 , where a predicate is a computable Boolean-valued

function cond : val(𝑉) → B that maps the values of the vari-

ables 𝑉 to either true or false. The condition is also known

as the guard condition or the enabling condition of the jump.

An effect eff : 𝑉 → 𝑄 specifies how the value of the state vari-

ables changes when the jump occurs. It assigns new values

to the variables in 𝑄 . The variables that are not mentioned

in the effect statements are assumed to remain unchanged.

• 𝐹 is the set of flows for the state variables𝑋 . 𝐹𝑘 ⊆ 𝐹 is the set

of flows for𝑋𝑘 ⊆ 𝑋 , where {𝑋0, 𝑋1, .., 𝑋𝐾 } is a set of disjoint
continuous variable sets such that ∪𝑘𝑋𝑘 = 𝑋 . A flow 𝑓 ∈ 𝐹𝑘
is associated with a differential equation ¤𝑋𝑘 = 𝐴𝑘𝐸 + 𝐵𝑘 and

a condition cond over𝑉 , where𝐴𝑘 , 𝐵𝑘 are constant matrices,

and cond is defined in the same way as in jumps that specifies

when a flow 𝑓 is activated. At each time, multiple flows 𝑓 ∈ 𝐹
can be activated with exactly one flow 𝑓𝑘 from each 𝐹𝑘 . That

is, there will always be a set of flows, which together specify

the evolution of the continuous internal variables𝑋 as linear

differential equations. We call such a set of flows the flow
set at each time, and it belongs to the power set of 𝐹 . During

the time when a flow is activated, the values of discrete state

variables stay the same.

Note that val(𝑄) also defines the invariant set of the internal

variables, where val(𝑋) could be nonconvex. Therefore, we can

avoid defining the unsafe set separately.

Without loss of generality, we use an integer variable with do-

main {0, 1, .., |val(𝑣) | −1} to replace a discrete variable 𝑣 ∈ 𝑉 , where
|val(𝑣) | is the number of the elements in val(𝑣). Thus, we can further
assume that all conditions, initial states, and goals are represented

as a propositional sentence of liner constraints:

𝜙 ::= true | (𝐺𝑉 ≥ 𝐻) | 𝜙1 | 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2, (1)

where 𝐺 ∈ R |𝑉 | is a |𝑉 |-vector of real values and 𝐻 ∈ R is a

real value. This propositional sentence of linear constraints can

represent both convex and nonconvex regions defined by linear

inequalities over both integer and continuous variables. Effects can

be also represented by (1) except its linear constraints involve both

𝑉 = 𝑄 ∪𝐸, which are the state and input variables before taking the

effects, and 𝑄 ′, which is the state variables after taking the effects.

Example 3.2. To formulate our motivating example, we define

two discrete internal variables: the astronaut LA ∈ {0, 1} has modes

Walking(0) and mode Riding(1); the rover LR ∈ {0, 1, 2} has
Driving(0), Stopped(1) and Charge(2).

Internal continuous variables pA ∈ [0, 50] × [0, 30] represent the
astronaut’s position, and xR ∈ [0, 50] × [0, 30] × [0, 30] × [0,∞)
includes the rover’s position pR ∈ [0, 50] × [0, 30], battery level

𝐸 ∈ [0, 30], and an internal clock 𝑐 ∈ [0,∞). pRx and pRy are the

rover’s positions over the x-axis and the y-axis, respectively. The

initial state is LA = 0, LR = 1, pA = (35, 10), xR = (25, 5, 10, 0) as
shown in Figure 2.

This system also takes commands as input variables, including

discrete input variables cmdA ∈ {0, 1}, cmdR ∈ {0, 1, 2}, and contin-

uous input variables vA ∈ [−0.2, 0.2]2, vR ∈ [−5, 5]2 representing
velocities.

Jumps

Board cond (LA=0)∧(cmdA =1)∧(pA=pR)∧(vR=0) eff (LA=1)

Deboard cond (LA=1)∧(cmdA =0)∧(vR=0) eff (LA=0)

Stop cond (cmdR =0) eff (LR=1),(c=0)

Drive cond (LR=1)∧(cmdR =1)∧(c>1) eff (LR=0)

Charge cond (LR=1)∧(cmdR =2)∧(pR=(10 ,10)) eff (LR=2)

Flows

Ride eq ¤pA(𝑡)=vR cond(LA=1)∧(cmdA =1)∧(pA=xA)
Walk eq ¤pA(𝑡)=vA cond (LA=0)∧(cmdA =0)
Ground eq ¤xR(𝑡)= [vR ,-1,0] cond (LR=0)∧(cmdR =1)∧(pRx <20)
Mount eq ¤xR(𝑡)= [vR ,-2,0] cond (LR=0)∧(cmdR =1)∧(pRx >20)∧(|vR | <2)
Stop eq ¤xR(𝑡)= [0,0,0,1] cond (LR=1)∧(cmdR =0)
Charge eq ¤xR(𝑡)= [0,0,0,10] cond (LR=2)∧(cmdR =2)

While flow sets can only change continuous state variables,

jumps can change both discrete and continuous state variables.

The conditions for both jumps and flows would depend on all vari-

ables (i.e., including state and input variables). While we call the

union of jumps and flows 𝐽 ∪ 𝐹 as operators 𝑂 , we call both jumps

and flow sets 𝐽 ∪ 2𝐹 as actions 𝐴. We use cond𝑎 to denote the set of

states 𝑣 ∈ val(𝑉) such that the condition associated with the action

𝑎 is true: 𝜙 (𝑣) = 𝑇𝑟𝑢𝑒 .
Given a flow set 𝑎 = ∪𝑘 𝑓𝑘 ∈ 2𝐹 , we denote the derivative of 𝑋 as

𝐴𝐸 +𝐵. Such𝐴 and 𝐵 can be easily constructed from the differential

equations for each flow 𝑋𝑘 = 𝐴𝑘𝐸 + 𝐵𝑘 . If at the beginning of the
flow the value of 𝑋 is 𝑥0, and the elapsed time of such flow is 𝛿 ,

then the 𝑋 ’s value would be updated as 𝑥 ← 𝑥0 +𝐴Δ + 𝐵𝛿 , where
Δ =

∫ 𝛿
0
𝐸𝑑𝑡 is the cumulative effects of 𝐸 during 𝑑 .

An input signal is a function 𝑒 : [0,∞) → val(𝐸), which specifies
the value of the input variables at any time 𝑡 ≥ 0. Once an input

signal is fixed, a run of the hybrid automaton is defined as follows:

Definition 3.3. Given a linear hybrid automaton ℋ = ⟨𝑉 = (𝑄 ∪
𝐸), 𝑞Init, Goal, 𝐽 , 𝐹 ⟩ and an input command 𝑒 : [0,∞) → val(𝐸), a
run 1

ofℋ is defined as a sequence of internal states 𝑞0, · · · , 𝑞𝑛 ∈
val(𝐿) × val(𝑋):

bℋ,𝑒 = 𝑞0
𝑎0,𝛿0−−−−→ 𝑞1 · · · , 𝑞𝑛−1

𝑎𝑛−1,𝛿𝑛−1−−−−−−−−→ 𝑞𝑛,

such that

1
We assume that in our run Zeno behaviors are not allowed. That is, we do not allow

an infinite number of jumps to occur in a finite time interval.

(1) 𝑞0 ∈ 𝑞Init and 𝑞𝑛 ∈ Goal.
(2) 𝑎0, · · · , 𝑎𝑛−1 are actions. Let 𝑡𝑖 =

∑𝑖−1
𝑗=0 𝛿 𝑗 be the accumulated

time associated with 𝑞𝑖 for each 𝑖 = 0, · · · , 𝑛, then: (a) if
𝑎𝑖 ∈ 𝐽 is a jump, then 𝛿𝑖 = 0, (𝑞𝑖 , 𝑒 (𝑡𝑖)) ∈ cond(𝑎𝑖), and
𝑞𝑖+1 = eff(𝑞𝑖 , 𝑒 (𝑡𝑖)); (b) if 𝑎𝑖 ∈ 2

𝐹
is a flow set, then 𝛿𝑖 ≥

0, (𝑞𝑖 , 𝑒 (𝑡𝑖)) ∈ cond(𝑎𝑖), 𝑥𝑖+1 = 𝑥𝑖 + 𝐴
∫ 𝑡𝑖+1
𝑡𝑖

𝑒 (𝜏)𝑑𝜏 + 𝐵𝛿𝑖 ,
ℓ𝑖+1 = ℓ𝑖 where 𝑞𝑖 = (ℓ𝑖 , 𝑥𝑖). Moreover, between the time

𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1), (𝑞(𝑡), 𝑒 (𝑡)) should always satisfy cond(𝑎𝑖).

We also denote the total time

∑𝑛−1
𝑖=0 𝛿𝑖 of a run 𝑒 as bℋ,𝑒 .TotalTime.

Note that although 𝑒 is defined on the infinite time horizon [0,∞),
we do not need to have the value for 𝑒 (𝑡) when 𝑡 > bℋ,𝑒 .TotalTime

Now given a linear hybrid automaton with inputs, we can define

the planning problem as finding an input signal whose run has the

minimum makespan.

Definition 3.4. Given a linear hybrid automaton ℋ = ⟨𝑉 =

(𝑄 ∪ 𝐸), 𝑞Init, Goal, 𝐽 , 𝐹 ⟩, the planning problem is to find a the

optimal input 𝑒∗ signal so the corresponding solution’s makespan

is minimized:

𝑒∗ = argmin

𝑒
bℋ,𝑒 .TotalTime

4 FINITE-STEP DECISION PROBLEM
Solving the planning problem (Definition 3.4) to get the optimal in-

put signal 𝑒∗ needs to reason over all possible 𝑒 (𝑡). For most hybrid

automaton, this is intractable, as the unbounded-time reachability

problem is undecidable even for rectangular hybrid automaton [27],

which is a simpler hybrid automaton than ours with the right-hand

side of the differential equations containing only constants.

Essentially, to solve the optimal 𝑒∗, we need to assign values

of all input variables for infinitely many 𝑡 . To make this problem

solvable, we fix the number of actions allowed in the run of the

hybrid automaton and simplify the original problem by searching

for 𝑒 (𝑡) that corresponds to each action. We introduce a fixed-step
linear hybrid automaton to capture such an idea.

Definition 4.1. A finite-step linear hybrid automaton with input
ℋ𝑛 is a linear hybrid automaton ℋ (as defined in Definition 3.1)

with all runs of ℋ to have exactly 𝑛 actions.

In Section 5, we present how to use a MILP encoding to solve

the planning problem for fixed-step linear hybrid automaton. Next,

we show that for a hybrid automatonℋ, once we fix the number

of actions 𝑛 and make it ℋ𝑛 , the feasible solution set (the set of

input signals 𝑒 such that bℋ𝑛,𝑒 is a run of ℋ with 𝑛 actions) is

non-decreasing as the number of actions 𝑛 increases.

Lemma 4.2. Letℋ𝑛 be a finite-step linear hybrid automaton for
ℋ with fixed action number 𝑛. Let Ξℋ𝑛 and ℰℋ𝑛 be all the runs
of ℋ𝑛 and their corresponding input signals, respectively. For any
0 < 𝑛′ < 𝑛, we have ℰℋ𝑛′ ⊆ ℰℋ𝑛 .

Proof. For any 𝑒 ∈ ℰℋ𝑛 , let 𝑞
𝑎,𝛿−−→ 𝑞′ be a segment of its run

bℋ,𝑒 and 𝑎 ∈ 2
𝐹
is a flow set. We can replace this segment with

𝑞
𝑎,𝛿−−→ 𝑞′

𝑎,0−−→ 𝑞′, and the new run is still a run of ℋ given input

signal 𝑒 . As this new run has 𝑛 + 1 actions, we prove that 𝑒 ∈ ℰℋ𝑛+1

for any 𝑒 ∈ ℰℋ𝑛 . □

As the original hybrid automaton ℋ does not fix the action

number, we know ℰℋ =
∨𝑛=∞
𝑛=0 ℰℋ𝑛 = lim𝑛→∞ ℰℋ𝑛 , which directly

follows from Lemma 4.2.

Let

𝑒∗𝑛 = argmin

𝑒∈ℰℋ𝑛
bℋ𝑛,𝑒 .TotalTime. (2)

As ℰℋ𝑛′ ⊆ ℰℋ𝑛 , it is easy to check that bℋ𝑛′ ,𝑒
∗
𝑛′
.TotalTime ≥

bℋ𝑛,𝑒
∗
𝑛
.TotalTime. This gives us the following corollary.

Corollary 4.3. Following Lemma 4.2, then lim

𝑛→∞
𝑒∗𝑛 = 𝑒∗, where

𝑒∗𝑛 is defined as (2).

5 MIXED INTEGER LINEAR ENCODING
In this section, we describe how to encode a finite-step linear hy-

brid planning problem as a Mixed Integer Linear Program, in which

numbers of variables or constraints at each step increase linearly

with the product of the operator number and the number of dis-

juncts involved in each condition (Section 5.3). We first introduce

a method to encode formulas with syntax as in (1) (Section 5.1),

and move on to the detailed encoding procedure for the finite-step

linear hybrid problem (Section 5.2). Additional constraints about

conflicting operators for speeding up MILP solving are discussed

in (Section 5.4).

5.1 Encoding Linear Constraint Formulas
Firstly, we introduce the methods to encode constraints with syntax

(1) as MILP constraints. We start by encoding a canonicalized form

and move on to the general case.

Encoding CNF Linear Constraint Formula. Note that a condition
expressed using (1) can be always transformed into a conjunctive

normal form (CNF) of linear constraints:

cond(𝑉) ≡ ∧𝑚𝑟 ∨
𝑚𝑟
𝑠 (cond𝑟𝑠 (𝑉)) ≡ ∧𝑚𝑟 ∨

𝑚𝑟
𝑠 (𝐺𝑟𝑠𝑉 ≥ 𝐻𝑟𝑠), (3)

where 𝐺𝑟𝑠 ∈ R |𝑉 | and 𝐻𝑟𝑠 ∈ R,𝑚 is the number of conjuncts in

cond, and𝑚𝑟 is the number of disjuncts in the 𝑟 th conjunct. For

convenience, we also replace𝐺𝑟𝑠𝑉 > 𝐻𝑟𝑠 with𝐺𝑟𝑠𝑉 ≥ 𝐻𝑟𝑠 without
invalidating the solutions. As disjunctions are present in cond,
which result in nonconvex sets in general, we use the Big-Mmethod

to handle such disjunctive logic in ∨𝑚𝑟𝑠 (𝐺𝑟𝑠𝑉 ≥ 𝐻𝑟𝑠). We define a

𝑚𝑟 -vector of intermediate Boolean variables 𝛼𝑟 with domain {0, 1}.
While 𝐺𝑟𝑠𝑉 ≥ 𝐻𝑟𝑠 should hold if 𝛼𝑟𝑠 = 1, we have 𝛼𝑟𝑠 = 1 for

at least one 𝛼𝑟𝑠 . Then, the 𝑟
th

disjunction ∨𝑚𝑟𝑠 (𝐺𝑟𝑠𝑉 ≥ 𝐻𝑟𝑠) is
represented as a set of linear constraints:(

∧𝑚𝑟𝑠 (𝛼𝑟𝑠 = 1 =⇒ 𝐺𝑟𝑠𝑉 ≥ 𝐻𝑟𝑠)
)
∧

(
𝑚𝑟∑
𝑠

𝛼𝑟𝑠 ≥ 1

)
(4)

Let𝑀 be a very large positive number, then each implication is

encoded as linear inequalities over both 𝑉 and indicator variables:

𝐺𝑟𝑠𝑉 +𝑀 (1 − 𝛼𝑟𝑠) ≥ 𝐻𝑟𝑠 (5)

As cond(𝑉) = true needs all the conjuncts to hold, we end up

with the following constraint:

∧𝑚𝑟 ∧
𝑚𝑟
𝑠

(
(𝐺𝑟𝑠𝑉 +𝑀 (1 − 𝛼𝑟𝑠) ≥ 𝐻𝑟𝑠) ∧

(
𝑚𝑟∑
𝑠

𝛼𝑟𝑠 ≥ 1

))
. (6)

Encoding General Linear Constraint Formula. While some re-

gions are easier to encode by using CNFs, the CNFs of some others

take more space. For example, in Figure 3, the blue region is a

good candidate to be encoded as CNF (∧3
0
𝜙0𝑖) ∧ (∨3

0
𝜙1𝑖) ∧ (∨3

0
𝜙3𝑖),

where 𝜙𝑖 𝑗 is a linear inequality and its direction is given in the

figure. However, the green region is more intuitive to be encoded

as (∧3
0
𝜙2𝑖) ∨ (∧3

0
𝜙4𝑖), which is not CNF.

Figure 3: Examples of two regions to encode as linear constraint
formulas.

We can use similar methods to encode the general case in (1) in a

recursive fashion. Given a set of formulas {𝜙0, 𝜙1, ..𝜙𝑚}, we assume

the MILP constraint for 𝜙𝑟 is already encoded as ∧𝑚𝑟𝑠 (LHS𝑟𝑠 ≥
RHS𝑟𝑠), which is a set of linear constraints over𝑉 and some indicator

variables. We show both the conjunction and disjunction encodings

of these formulas. To obtain the MILP constraint of conjunction

∧𝑚𝑟 𝜙𝑟 , we have:
∧𝑚𝑟 ∧

𝑚𝑟
𝑠 (LHS𝑟𝑠 ≥ RHS𝑟𝑠) . (7)

To encode disjunction ∨𝑚𝑟 𝜙𝑟 , we introduce an 𝑚-vector of

Boolean variables 𝛼 and the disjunction is captured by:(
∧𝑚𝑟 ∧

𝑚𝑟
𝑠 (LHS𝑟𝑠 +𝑀 (1 − 𝛼𝑟) ≥ RHS𝑟𝑠)

)
∧

(∑
𝑟

𝛼𝑚𝑟 ≥ 1

)
. (8)

For each linear constraint, if there exist some indicator variable

that is not equal to 1, the constraint trivially holds. This set of

constraints can be further canonicalized into ∧𝑚𝑟𝑠 (LHS𝑟𝑠 ≥ RHS𝑟𝑠)
over 𝑉 and indicator variables for other logic operations.

5.2 Encoding Finite-step Hybrid Planning
Now we are ready to encode the entire planning problem as defined

in Definition 3.4 for linear hybrid automata with 𝑛-step runs.

5.2.1 Variables. To represent the internal states {𝑞0, 𝑞1, .., 𝑞𝑛}, we
define a set of variables {𝑄0, 𝑄1, .., 𝑄𝑛}, and 𝑄𝑖 corresponds to the

internal state 𝑄𝑖 right after 𝑎𝑖 occurs and right before 𝑎𝑖+1 occurs.
Their domains are copied from 𝑄 . To represent the input signal 𝑒 ,

we also have 𝐸𝑖 ∈ {𝐸0, 𝐸1, .., 𝐸𝑛−1}, corresponding to the values of

𝐸 when 𝑎𝑖 occurs, and their domains are copied from 𝐸.

To represent the actions that happen at each step, we define a

set of binary activation variables {𝑃0, 𝑃1, .., 𝑃𝑛−1}. 𝑃𝑖 is the union of

𝑃
𝐽
𝑖
and 𝑃𝐹

𝑖
= 𝑃

𝐹0
𝑖
∪ 𝑃𝐹1

𝑖
∪, .., 𝑃𝐹𝐾

𝑖
, which are the activation variables

at step 𝑖 for jumps 𝐽 and flows {𝐹1, 𝐹2, .., 𝐹𝐾 }, respectively. Each
𝑝𝑜
𝑖
∈ 𝑃𝑖 corresponds to an operator 𝑜 (i.e., a jump or a flow) at

step 𝑖 . If 𝑝𝑜
𝑖
= 1, operator 𝑜 is activated at step 𝑖; otherwise, 𝑜 is

inactivated. To fully determine the effects of flows, we need to

specify the cumulative effects of the input variables and the elapsed

time during these flows. Thus, we define 𝑑𝑖 with domain [0,∞) to
represent the elapsed time during step 𝑖; and real variable Δ denotes∫ 𝑑𝑖
0
𝐸𝑖𝑑𝑡 , the cumulative effects of 𝐸𝑖 during step 𝑖 .

We denote the set of all theseMILP variables as𝒱 . LetΠ : 𝒱 → R
be a MILP solution that maps a MILP variable 𝑣 ∈ 𝒱 to a value

Π(𝑣) ∈ val(𝑣). Then, given a MILP solution Π, we can get the values

of the input command 𝑒 as well as a valid run bℋ,𝑒 = 𝑞0
𝑎0,𝛿0−−−−→

𝑞1 · · · , 𝑞𝑛−1
𝑎𝑛−1,𝛿𝑛−1−−−−−−−−→ 𝑞𝑛 as given in Definition 3.3. We extract 𝑒

over duration [0,∑(𝑛−1)
𝑖=0

Π(𝑑𝑖)] as follows:

𝑒 (𝑡) =
{

Π(𝐸𝑖), if 𝑡 = (∑𝑖𝑗=1 Π(𝑑 𝑗))
Π(Δ𝑖)/Π(𝑑𝑖), if (∑(𝑖−1)

𝑗=0
Π(𝑑 𝑗)) < 𝑡 < (

∑𝑖
𝑗=0 Π(𝑑 𝑗))

(9)

We extract the run bℋ,𝑒 of 𝑒 from Π as follows:

𝑞𝑖 = Π(𝑄𝑖), for 𝑖 ∈ {0, 1, .., 𝑛},
𝛿𝑖 = Π(𝑑𝑖), for 𝑖 ∈ {0, 1, .., 𝑛 − 1},

𝑎𝑖 = 𝑎 if 𝑝 ∈ 𝑃𝑖 and Π(𝑝) = 1, for 𝑖 ∈ {0, 1, .., 𝑛 − 1}.
(10)

5.2.2 Objective Function. As specified in Definition 3.3, we aim

at finding a run with minimum TotalTime, and thus the objective

function is

∑𝑛−1
𝑖=0 𝛿𝑖 .

5.2.3 Constraints. Next, we introduce the constraints over these
variables, which force only one jump or one flow set to be chosen

at every time step with their conditions being satisfied and effects

being imposed, such that the goal states can be reached from the ini-

tial state through these actions. Figure 4 summarizes all constraints

C1-C10 to encode the planning problem. We have the following

theorem that justify the pair of input command and run given by

(9)-(10) is valid:

Theorem 5.1. Given a 𝑛-step hybrid automata ℋ and a MILP
solution Π over the variables 𝒱 as defined in Section 5.2.1, the input
command 𝑒 and run bℋ,𝑒 that are extracted from Π by (9)-(10) are
an optimal solution ofℋ if 𝒱 satisfies constraint C1-C10 in Figure 4
and

∑𝑛−1
𝑖=0 𝛿𝑖 is minimized.

Next, we prove Theorem 5.1 by explaining C1-C10 in detail. As

these constraints are the exact translation of Definition 3.3, our

solution approach is sound and complete and thus optimal.

Initial and Goal States. First, constraint C1 ensures that runs

start from 𝑞Init, and its final state 𝑄𝑛 satisfies Goal such that

Definition 3.3(1) is respected. We use (7)-(8) to encode constraint

Goal(𝑄𝑁) = true.

Operator Activation. Constraint C2 can avoid the ambiguity of

having multiple jumps or multiple flows for the same internal con-

tinuous variables at each step. Recall that 𝑝𝑜
𝑖
= 1 means the cor-

responding operator 𝑜 is activated at step 𝑖 . Constraint C2 forces

either of the following conditions to hold: (1) exactly one jump

is active, and all the flows are inactivated (Definition 3.3(2a)); (2)

all jumps are inactivated, and there is exactly one flow for each

continuous variable set is activated (Definition 3.3(2b)).

Jump Constraint. When a jump is active, its conditions should

be satisfied, and their effects should be imposed (Definition 3.3(2a)).

For each jump 𝑗 ∈ 𝐽 with condition cond𝑗 , when jump 𝑗 is activate

at step 𝑖 , which is 𝑝
𝑗
𝑖
= 1, condition cond𝑗 should hold, which is

captured by C3. Constraint C4 enforces the effect, which is linear

constraints𝑄𝑖 = eff𝑗 (𝑉𝑖−1), to happen right after jumps. Note that

Initial and goal states

C1 . (𝑄0 = 𝑞Init) ∧ (Goal(𝑄𝑛) = true)

Operator activation

C2 .

∧𝑛−1
𝑖=0

∧
𝐹𝑘⊆𝐹 (

∑
𝑝𝑜
𝑖
∈(𝑃 𝐽

𝑖
∪𝑃𝐹𝑘
𝑖
)
𝑝𝑜
𝑖
= 1)

Jump constraint

C3 .

∧𝑛−1
𝑖=0

∧
𝑗⊆𝐽 ((𝑝

𝑗

𝑖
= 1) =⇒ cond𝑗 (𝑉𝑖))

C4 .

∧𝑛
𝑖=1

∧
𝑗⊆𝐽 ((𝑝

𝑗

𝑖
= 1) =⇒ (𝑄𝑖 = eff𝑗 (𝑉𝑖−1)))

C5 .

∧𝑛−1
𝑖=0

∧
𝑗∈𝐽 ((𝑝

𝑗

𝑖
= 1) =⇒ (𝑑𝑖 = 0))

Flow constraint

C6 .

∧𝑛−1
𝑖=0

∧
𝑓 ⊆𝐹 (𝑝

𝑓

𝑖
= 1) =⇒ (∧𝑟 ∨

𝑠 (cond
𝑄

𝑓 ,𝑟𝑠
(𝑄𝑖) ∧ cond𝑄𝑓 ,𝑟𝑠 (𝑄𝑖+1)))

C7 .

∧𝑛−1
𝑖=0

∧
𝑓 ⊆𝐹 (𝑝

𝑓

𝑖
= 1) =⇒ cond𝐸

𝑓
(𝐸𝑖)

C8 .

∧𝑛−1
𝑖=0

∧
𝑓 ⊆𝐹 (𝑝

𝑓

𝑖
= 1) =⇒ condΔ

𝑓
(Δ𝑖 , 𝑑𝑖)

C9 .

∧𝑛−1
𝑖=0

∧
𝑓 ⊆𝐹 ((𝑝

𝑓

𝑖
= 1) =⇒ (𝑋𝑘 (𝑖+1) −𝑋𝑘𝑖 = 𝐴𝑓 Δ𝑖 − 𝐵𝑓 𝑑𝑖))

C10 .

∧𝑛−1
𝑖=0

∧
𝑓 ∈𝐹 ((𝑝𝐹𝑖 = 1) =⇒ (𝐿𝑖+1 = 𝐿𝑖))

Figure 4: Constraints in the MILP encoding.

this constraint also forces the unaffected variables to remain the

same after the jumps. In addition, C5 ensures that the elapsed time

during jumps is zero, which is activated when some jump is chosen.

Flow Constraint. While the condition of jumps should only hold

right before it happens, the condition of flows should always hold

until the next action (Definition 3.3(2b)). Let cond𝑓 be the condition
of a flow 𝑓 ∈ 𝐹 and denote the constraints of cond𝑓 over 𝑄 and 𝐸

as cond𝑄
𝑓
and cond𝐸

𝑓
, respectively. Given our solution specification,

while the constraint over 𝑄 should hold through the execution of

𝑓 , including the start and end, the constraint over 𝐸 should also

thoroughly hold except at the end of this flow, where the change of

𝐸 may trigger other jumps or flows.

Since the considered dynamics are linear and all the conditions

are sets of disjunctive linear constraints, satisfying cond𝑄
𝑓
at the

start and the end of flow 𝑓 with respect to the same disjunct in

each disjunctive linear constraint implies cond𝑄
𝑓
holds during 𝑓 .

Constraint C6 captures cond𝑄
𝑓
at the start and end of flow 𝑗 being

activated. This constraint is sufficient to guarantee the linear tra-

jectory from 𝑄𝑖 ti 𝑄𝑖+1 always satisfies cond
𝑄

𝑗
, and the reason is as

follows: they share the same indicator variables and always satisfy

the same disjunct in each disjunction, and thus they are in the same

convex region; as the line between two points in a convex region

always stay in this region, we know that the trajectory from 𝑄𝑖

to 𝑄𝑖+1 satisfy cond
𝑄

𝑓
. As a similar encoding for motion planning

with polytope obstacles can be seen in [12], our encoding method

extends it to handle more general linear constraint formula.

As condition cond𝐸
𝑓
should hold through flow 𝑓 except at the

end, we add constraints over 𝐸 when 𝑓 starts and the constraints

over Δ, which is the cumulative effects of 𝐸 during 𝑓 happening.

While the former constraint is captured in C7, the latter is in C8. For

a linear constraint 𝐺𝐸
𝑓 ,𝑟𝑠

𝐸𝑖 ≥ 𝐻𝐸𝑓 ,𝑟𝑠 , we can obtain the equivalent

linear constraint over Δ𝑖 and 𝑑𝑖 by integrating it over time on both

sides and substituting in Δ =
∫ 𝑑
0
𝐸𝑑𝑡 :

𝐺𝐸
𝑓 ,𝑟𝑠

Δ𝑖 ≤ 𝐻𝐸𝑓 ,𝑟𝑠𝑑𝑖 . (11)

By doing this for each 𝐺𝐸
𝑓 ,𝑟𝑠

𝐸𝑖 ≥ 𝐻𝐸𝑓 ,𝑟𝑠 in cond𝐸
𝑓 ,𝑟𝑠

, we obtain the

condition condΔ
𝑓 ,𝑟𝑠

over (Δ, 𝑑).
Then, we determine the evolution of state variables during the

flows. Recall that the state variables 𝑄 consist of continuous state

variables 𝑋 and discrete state variables 𝐿. Let the differential equa-

tion of a flow 𝑓 be ¤𝑋𝑘 = 𝐴𝑓 𝐸+𝐵𝑓 , and then C9 enforces continuous

dynamics by adding the effects of Δ and 𝑑 to 𝑋𝑘 . Constraint C10

makes sure that flows do not change discrete variables.

5.3 Complexity Analysis
Now, we discuss the complexity of our MILP encoding. Let 𝑛 be the

number of total steps, 𝐾 be the total number of disjoint continuous

variable sets {𝑋1, 𝑋2, .., 𝑋𝐿}, 𝑄 be the internal state variables, 𝐸 be

the input variables, 𝐽 be the jumps, 𝐹 be the flows, and𝑚 and𝑚′

be the maximum number of linear inequalities and disjuncts in

each condition or effect, respectively. As shown in Section 5.2.1,

we know the total number of variables in a MILP is the sum of the

following variables: the variables for internal states, input signals,

elapsed times, cumulative effects, which are 𝑛(|𝑄 | + 2|𝐸 | + 1) MILP

variables in total; the activation variables for flows and jumps,

which is 𝑛(|𝐽 | + |𝐹 |); the additional Boolean variables for indicating

activated disjuncts in conditions, which is 2𝑚′ + 𝑛𝑚′(|𝐽 | + 2|𝐹 |) as
shown in Table 1. Thus, we know the number of all the variables is

in 𝒪(𝑛(|𝑉 | +𝑚′(|𝐽 | + |𝐹 |)), where 𝒪 is the asymptotic notation.

Table 1: Numbers of indicator variables in C1-C10.

C1 C2 C3 C4 or C5 C6 C7 or C8 C9 or C10

2𝑚′ 0 𝑛𝑚′ | 𝐽 | 0 𝑛𝑚′ |𝐹 | 𝑛𝑚′ |𝐹 | 0

Table 2: Numbers of linear constraints in C1-C10.

C1 C2 C3 or C4 C5 C6 C7 or C8 C9 or C10

2𝑚 𝑛𝐾 𝑛𝑚 | 𝐽 | 𝑛 | 𝐽 | 2𝑛𝑚 |𝐹 | 𝑛𝑚 |𝐹 | 𝑛 |𝐹 |

We show the total numbers of constraints in C1-10 in Table 2. The

total number of all these constraints is 2𝑚+𝑛(𝐾+(2𝑚+1) |𝐽 | + (3𝑚+
1) |𝐹 |). As 𝐾 ≤ |𝐹 |, we know the number of total constraints is in

𝒪(𝑛𝑚(|𝐽 | + |𝐹 |)). At each time step, the constraint number increase

linearly with the product of the number of operators |𝐽 | + |𝐹 | and
the number of disjuncts in a condition𝑚.

5.4 Additional Techniques for Speeding up
To accelerate MILP solving, we add additional constraints to encode

conflicting operators that cannot happen together or in sequence.

While constraints C3, C4, C6, and C7 already prevent these con-

flicting operators from happening, additional constraints can help

a MILP optimizer to effectively prune state space and thus reduce

total runtimes.

One type of additional constraints is about the flows with mutu-

ally exclusive conditions. Let 𝑓 , 𝑓 ′ ∈ 𝐹 be two flows whose differ-

ential equations scope on different continuous variable sets 𝑋𝑘 , 𝑋𝑘′ ,

and cond𝑓 and cond𝑓 ′ be there conditions. If cond𝑓 ∧ cond𝑓 ′ is
always false, which means their specified states are totally disjoint,

we add constraint 𝑝
𝑓

𝑖
+ 𝑝 𝑓

′

𝑖
≤ 1 for every 𝑖 ∈ {0, 1, .., 𝑛 − 1}, which

ensures at most one of these flows can be activated at every step.

The total number of the added constraints is 𝑛𝑚𝑓 , where𝑚𝑓 is the

number of conflicting flow pairs. Note that these constraints are

redundant, which are already encoded by C6, but could help a MILP

optimizer to easily identify conflicting operators without further

checking the complex constraints in C6.

Another type of additional constraints is about subsequent con-

flicting operators. Let 𝑜, 𝑜 ′ ∈ 𝐽 ∪ 𝐹 be two operators, and post
𝑄
𝑜

and pre
𝑄

𝑜′ be the possible internal states after taking 𝑜 , and the pos-

sible internal states before 𝑜 ′, respectively. We have pre
𝑄

𝑜′ = cond
𝑄

𝑜′

regardless of 𝑜 ′ is a jump or a flow, where cond
𝑄

𝑜′ is the condition of

𝑜 ′ over internal states𝑄 . On the other hand, post𝑜 can be different

given different operator types: if 𝑜 is a flow, post𝑜 is still cond
𝑄
𝑜

since flow 𝑜 needs this condition to hold during its happening; if 𝑜 is

a jump, we set post𝑜 = {eff𝑜 (𝑞,𝑢) | cond𝑄𝑜 (𝑞) = true and (𝑞,𝑢) ∈
𝑉 }. If post𝑜 ∧ pre𝑜′ is always false, we know they cannot hap-

pen in sequence. Thus, we add constraint 𝑝𝑜
𝑖
+ 𝑝𝑜′

𝑖+1 ≤ 1 for every

𝑖 ∈ {0, 1, .., 𝑛 − 2}. The total number of the added constraints is

(𝑛 − 1)𝑚𝑜 , where𝑚𝑜 is the number of conflicting operator pairs

that cannot happen in sequence.

6 TEMPORALLY CONCURRENT GOALS
In this section, we extend our method to handle a set of temporally

concurrent goals by compiling them into our hybrid automata with

a certain final goal. There are various types of specifications to

represent desired system behaviors over continuous time in both

planning and control, such as STL (Signal Temporal Logic) [43],

and Qualitative State Plan (QSP) [30]. While the former formalism

has a more expressive syntax by using formal logic, QSP is a well-

known specification used in planning and is more suitable to the

applications we consider in this paper, which specifies a set of tasks

to complete as well as the temporal bounds between their starts

and ends. We introduce our method to deal with QSP in this section

and present related experiments in Section 7.3. We view exploring

the methods and applications related to STL as our future work.

pA= (35, 10)

pA = (10, 10) Event

Episode[20, 30] [20, 30]

Figure 5:QSP example of four events and two episodes. Episode 𝑒𝑝0
constrain the astronaut to stay at the initial state between 20 and 30

minutes right after the mission begins; Episode 𝑒𝑝1 constrain the
astronaut to stay at the charge station between 20 and 30 minutes
sometime during the mission.

A 𝑄𝑆𝑃 is a tuple 𝑞𝑠𝑝 = ⟨𝐸𝑉 , 𝐸𝑃⟩: 𝐸𝑉 is a set of events, and

𝑒0 ∈ 𝐸𝑉 is the initial event that represents the mission begins; 𝐸𝑃 is

a set of episodes. Each episode 𝑒𝑝 = ⟨𝑒⊢𝑒⊣, 𝑙𝑏,𝑢𝑏, cond⟩ is associated
with start and end events 𝑒⊢, 𝑒⊣ ∈ 𝐸𝑉 , a duration bound [𝑙𝑏,𝑢𝑏],
and a condition cond. For each 𝑒 ∈ 𝐸𝑉 , we denote {𝑒𝑝 ∈ 𝐸𝑃 | 𝑒 =
𝑒𝑝.𝑒⊢} as starting(𝑒) and {𝑒𝑝 ∈ 𝐸𝑃 | 𝑒 = 𝑒𝑝.𝑒⊣} as ending(𝑒). An
example of QSP is given in Figure 5.

A schedule 𝑠 : 𝐸𝑉 → R≥ to 𝑞𝑠𝑝 is a function that maps 𝑒 ∈
𝐸𝑉 to a non-negative real value such that (1) 𝑠 (𝑒0) = 0; and (2)

𝑙𝑏𝑖 ≤ 𝑠 (𝑒⊢𝑖) − 𝑠 (𝑒
⊣
𝑖
) ≤ 𝑢𝑏𝑖 for every 𝑒𝑝𝑖 ∈ 𝐸𝑃 . We say a trajectory b

satisfies 𝑞𝑠𝑝 if there exists a schedule 𝑠 such that for every 𝑒𝑝𝑖 ∈ 𝐸𝑃 ,
cond𝑖 (b (𝑡)) = true when (𝑠 (𝑒⊢

𝑖
) < 𝑡 < 𝑠 (𝑒⊣

𝑖
)).

Given a hybrid automatonℋ = ⟨𝑉 = (𝑄 ∪ 𝐸), 𝑞Init, Goal, 𝐽 , 𝐹 ⟩
and a QSP 𝑞𝑠𝑝 = ⟨𝐸𝑉 , 𝐸𝑃⟩, we compile this QSP into the origi-

nal automaton as described below, and the runs of the obtained

new automaton ℋ′ respect both ℋ and 𝑞𝑠𝑝 . We denote this new

automaton asℋ′ = ⟨𝑉 ′ = (𝑄 ′ ∪ 𝐸), 𝑞′Init, Goal
′, 𝐽 ′, 𝐹 ′⟩.

First, we make a clock variable 𝑐𝑒𝑝 with domain [−2,∞) for each
episode 𝑒𝑝 ∈ 𝐸𝑃 . While 𝑐𝑒𝑝 = −1means 𝑒𝑝 has not started, 𝑐𝑒𝑝 = −2
means 𝑒𝑝 has been achieved. When 𝑒𝑝 is happening, 𝑐𝑒𝑝 ≥ 0. Thus,

the continuous state variables of ℋ′ is 𝑄 ′ = 𝑄 ∪𝐶 and 𝐶 = {𝑐𝑒𝑝 ∈
[−2,∞) | 𝑒𝑝 ∈ 𝐸𝑃}. Since all the episodes have not started in the

beginning except the episodes started by initial event 𝑒0, the new

initial state is 𝑞′Init = 𝑞Init ∪ {(𝑐 = −1) | 𝑐 ∈ 𝐶/starting(𝑒0)}} ∪
{𝑐 = 0 | 𝑒𝑝 ∈ starting(𝑒0)}. As all the episodes should be achieved
eventually, the new goal is Goal′ = Goal ∪ {(𝑐 = −2) | 𝑐 ∈ 𝐶}.

To describe that clock variables reset at events, we add a set of

jumps 𝐽𝐸𝑉 , and 𝐽
′ = 𝐽 ∪ 𝐽𝐸𝑉 . For each event 𝑒 ∈ 𝐸𝑉 , there is a

jump 𝑗𝑒 ∈ 𝐽𝐸𝑉 with the following condition: {(𝑐𝑒𝑝 = −1) | 𝑒𝑝 ∈
starting(𝑒𝑝)}, which ensures event 𝑒 has not happened before,

and {(𝑙𝑏 (𝑒𝑝) ≤ 𝑐𝑒𝑝 ≤ 𝑢𝑏 (𝑒)) | 𝑒𝑝 ∈ ending(𝑒)}, which shows

𝑒 should end only when all the ended episodes has lasted for a

proper duration with respect to their temporal bounds. The effects

{(𝑐𝑒𝑝 = 0) | 𝑒𝑝 ∈ starting(𝑒)} and {(𝑐𝑒𝑝 = −2) | 𝑒𝑝 ∈ ending(𝑒)}
capture the clock variable resets for started episodes and ended

episodes, respectively.

To force the condition is imposed and its clock variable clicks

when an episode is happening, we have a flow 𝑓 1𝑒𝑝 for each clock

variable 𝑐 ∈ 𝐶 . This flow has differential equation ¤𝑐𝑒𝑝 = 1 and

conditions (𝑐𝑒𝑝 ≥ 0) ∪ cond𝑒𝑝 . We also have 𝑓 0𝑒𝑝 with differential

equation ¤𝑐𝑒𝑝 = 0 and condition (𝑐𝑒𝑝 ≤ −1) to represent that episode
𝑒𝑝 is not happening. Thus, the new flows are 𝐹 ′ = 𝐹 ∪ 𝐹𝐸𝑃 and

𝐹𝐸𝑃 = {𝑓 0𝑒𝑝 | 𝑒𝑝 ∈ 𝐸𝑃} ∪ {𝑓 1𝑒𝑝 | 𝑒𝑝 ∈ 𝐸𝑃}.

7 EXPERIMENTAL RESULTS
To demonstrate the capabilities of our method, we ran our MILP

encodingwith Gurobi 9.0.1, which is highly optimized and leverages

multiple processor cores, and benchmarked against Scotty [14] on

the Mars transportation domains with different initial setups, the

air refueling domains with different numbers of UAVs taking photos

in different numbers of regions, and the truck-and-drone delivery

domains with different numbers of trucks, drones, and packages.

All experiments were run on a 3.40GHZ 8-Core Intel Core i7-6700

CPU with 36GB RAM with a runtime limit of 600s. At the end of

this section, we also discuss the sizes of these MILP encodings.

7.1 Mars Transportation Domain
The Mars transportation domains involve reasoning over obstacle

avoidance and battery consumption under different terrains, such

that the astronaut can reach the destination with the help of the

rover in the shortest time. A map consists of a set of regions, and

each region is a polygon associated with a terrain type. A region

can be of the forbidden area, mountain, ground, and basin, which

Rover

Astronaut

Destination

On

(a) The rover directly picks up and
delivers the astronaut to the desti-
nation.

Rover

Astronaut

Destination

On

Off

(b) The rover does not have enough
battery for the trip or going to the
charge station, and the astronaut
has to walk.

Rover

Astronaut

Destination

On

Charge

(c) The rover picks up and delivers
the astronaut but has to recharge
during the trip.

Rover

Astronaut

Destination

Charge

On

(d) The rover picks up and delivers
the astronaut after recharging.

Figure 6: Mars transportation examples with different initial
battery levels and charge station locations: the charge station is
marked as ⊲; the forbidden areas, mountain, ground, and basin are
in gray, red, green, and blue, respectively; the route of the rover is
in red and starts from the bottom left; the route of an astronaut
walking is in blue, and its goal destination is at the bottom right;
the route of the astronaut taking the rover to the destination is in
green.

follows the terrains in Figure 1. Driving a rover in different ter-

rains has different velocity limits and energy consumption rates:

driving in the mountains should be limited to 10km/h, and the

battery consumption rate is 3unit per hour; the velocity limit and

the consumption rate in the basin is 30km/h and 2unit/h, and those

are 50km/h and 2unit/h for the ground. Walking in these three

terrains is 2km/h. On the map, while we fix the initial locations

and destinations for astronauts and rovers, we vary the locations

of charge stations and the initial battery levels in the four different

examples in Figure 6.

In Figure 6, the forbidden areas, mountain, ground, and basin are

in gray, red, green, and blue, respectively. As we can see, while the

rover starts from its initial location at the bottom left and traverses

through mountains and basins to arrive at the destination, the

astronaut walks towards the rover and joins the ride. It is interesting

to notice that the rover chooses the upper route since traversing

the lower mountain area costs more time and energy. While the

battery is enough for the rover to complete the route in (a), it

is insufficient in (b) and (c). In Figure 6(c), the rover carries the

astronaut to the charge station and then continues the mission

after getting enough battery. In Figure 6(b), the rover battery is too

low and even insufficient for the trip to the charge station. Thus,

the astronaut gets off and walks from the closest location to the

Table 3: Experimental results of twelve domains. The three numbers after each delivery domain name are the numbers of trucks, drones, and
packages, respectively; 𝑡 : the total runtime in seconds; 𝑔: the makespan of the returned solution; 𝑡1: the runtime to find the first solution; 𝑔1:
the makespan of the first solution; 𝑡∗: the runtime to first find the solution that is finally returned; 𝑛: the number of actions; #𝒱𝐶 , #𝒱𝐼 , #C: the
numbers of continuous variables, integer variables, and constraints in our MILP encoding; #𝒱′

𝐶
, #𝒱′

𝐼
, #C’: the numbers of continuous variables,

integer variables, and constraints in the presolved MILP models.

Domain

Scotty MILP Encoding

𝑡 𝑔 𝑡 𝑔 𝑡1 𝑔1 𝑡∗ 𝑛 #𝒱𝐶 #𝒱 ′
𝐶

#𝒱𝐼 #𝒱 ′
𝐼

#C #C’

Mars (a) <1 35 <1 4.6 <1 35 <1 6 65 54 66 34 1003 527

Mars (b) <1 35 <1 25.2 <1 35 <1 6 65 54 66 34 1003 527

Mars (c) <1 35 5.0 5.2 <1 35 <1 9 95 84 99 58 1501 884

Mars (d) <1 35 3.9 6 <1 35 <1 9 95 84 99 58 1501 915

Air (a) 4 91 <1 43.7 <1 82.7 <1 7 75 58 80 22 897 423

Air (b) 17 163 2.4 55.9 <1 103.9 1.5 12 125 109 185 117 2443 1826

Air (c) >600 NA >600 84.3 1.7 177.8 70.9 24 245 232 610 478 11117 9274

Air (d) >600 NA >600 40.7 0.6 108.2 154.4 18 278 260 566 450 13692 11181

Delivery (a) (1,1,1) NA NA 8.9 36 <1 240 3.3 7 99 91 339 240 6449 3347

Delivery (b) (1,2,2) NA NA 13.0 12 <1 120 3.3 7 129 115 402 308 7610 4325

Delivery (c) (2,4,4) NA NA >600 132 <1 780 219.6 11 291 267 1128 999 28538 20804

Delivery (d) (2,4,4) NA NA >600 240 1.9 960 14.5 11 339 319 1172 1029 34130 25583

destination after draining the battery. In Figure 6(d), the rover also

gets recharged, but it happens before picking up the astronaut due

to different charge station locations.

Table 3 shows that our method is able to find the optimal solution

and prove its optimality for all these four domains. While Scotty

can find a consistent solution 𝑔 = 35 within one second 𝑡 < 1, our

method can also find such a solution𝑔1 = 35within one second 𝑡1 <

1. In this solution, the astronaut directly moves to the destination

without the help of the rover, which only uses one action but takes

a very long time. While Scotty stops after finding this solution, our

method keeps searching for better solutions and finds the optimal

solution roughly within one second 𝑡∗ < 1. These solutions are then

proved to be optimal and returned as Gurobi exhausts the solution

space. Thus, our method is able to quickly find a consistent solution

and an optimal solution for the Mars transportation domains.

7.2 Air Refueling Domain
In this domain, autonomous Unmanned Aerial Vehicles (UAVs) need

to take pictures of several regions before landing at the destination

location. Since a UAV has limited fuel, it needs to refuel in-air from a

tanker plane. This problem is difficult since it requires reasoning on

the optimal ordering of visiting all the regions and also coordinating

the UAVs and the tank planes to take necessary refueling. When

multiple UAVs are in a mission, we should also effectively dispatch

the photo-taking tasks such that the makespan is minimized. The

maximum velocity of the tank plane is 20𝑚/𝑠 . While flying, UAVs

can fly with the velocity up to 30𝑚/𝑠 , and the fuel decreases at

2unit/𝑠 . Refueling requires the distances between UAVs and tanks

planes to be less than 10𝑚. When an UAV is refueling, the maximum

allowable velocity is 5𝑚/𝑠 , and the fuel increases at 10unit/𝑠 . While

the tank capacity of UAVs is 100 units, we assume the tank plane

has enough fuel during missions.

We experimented with this domain on four examples with differ-

ent numbers of regions and UAVs, as shown in Figure 7. The UAVs

and the plane start from the same spot and should arrive at the same

destination. While there is only one UAV in the examples (a), (b),

Start

End

(a) The UAV takes photos for three
regions and does not need refuel-
ing.

Start

End

(b) The UAV takes photos for four
regions and refuels once along the
route.

Start

End

(c) TheUAV takes photos for ten re-
gions and refuels twice along the
route.

Start

End

(d) Two UAVs take photos for eight
regions along two different routes.
While one UAV does not need refu-
eling, the other one refuels once.

Figure 7: Air refueling examples with different numbers of UAVs
and regions to take photos: the regions for taking photos are gray
polygons; all the examples consider one UAV (blue) and one tank
plane (red) except example (d), which has an additional UAV (green);
all the UAVs (blue) are fueled up (i.e., 100 units) in the beginning
except the second UAV (green) in domain (d), whose fuel is 10 units.
When the plane is refueling, the routes are makred in yellow.

Package1
Truck1
Drone1

Truck2
Drone2

Package2

OffOnOff

Off On Off

Package1 Destination

Package2 Destination

Figure 8: Examples of two trucks and two drones delivering two
packages: their initial positions and the package destinations are
marked; the truck routes are in red or green and start from the bot-
tom left and the top right, respectively; the routes are in green if the
trucks are carrying drones; the routes of drones flying are in blue.

and (d), we add another UAV in example (d). All the examples only

have one tank plane. While our method succeeds in finding feasible

solutions in two seconds for all the examples, Scotty spends much

more time on (a) and (b) and fails to solve the other two examples

within 10 minutes, which require more complex coordination on

visiting a larger number of regions. It is interesting to note that

our first solutions are already better than the Scotty solutions, and

the makespans of our final solutions are mostly half of those of

Scotty. This is because the delete-relaxation heuristics in Scotty

misguided its greedy search when energy resources (i.e., fuel) are in

this domain, which prevents Scotty from being effective or efficient

in this domain.

7.3 Truck-and-Drone Delivery Domain
In this domain, we consider a fleet of delivery trucks, each equipped

with a couple of drones, and the drone and truck both make de-

liveries to the customers. While trucks can travel between depots

through highways or roads, the drone can fly freely in obstacle-free

regions or land on trucks to take a ride. When trucks are driving

on the road, they should follow the minimum and maximum speed

limits as well as the directions, which prevents trucks from violat-

ing the traffic rules such as making U-turns on highways. Drones

are more flexible, but they are slower, and the travel distance is

limited by their battery capacity. In this domain, we look for a plan

to deliver all the packages in the shortest time. Figure 8 shows an

example of the truck-and-drone delivery domains between two

depots, in which the two trucks loaded with packages and drones

are driving towards each other on a two-way street. Unfortunately,

the package destinations are not on the road ahead, and the trucks

cannot turn around. A reasonable plan is that the packages are

swapped to the other truck by using the drones to cross the street,

and then the truck and drone on the other side continue delivery.

We test on a map with five depots and ten highways between

these depots. Each road is straight and around 10km long with a

speed limit of 30-60km/h. The drone can fly with a maximum speed

of 5km/h. We assume no obstacle for drones in these examples. The

experimental results of four truck-and-drone delivery examples are

shown in Table 3. While the packages can be delivered at any time

in the first three examples, Delivery (d) requires the packages to

be delivered within certain time windows specified as a QSP. As

we noticed, Scotty does not make progresses to carrying drones to

the deport near the drop-off locations and thus fails to solve any of

these problems. It can be seen from the 𝑡1 column that our method

is able to find the solution very quickly within several seconds. The

optimal solutions can also be found in a very short time, 𝑡∗ for both
(a) and (b). In domains (c) and (d), in which we have two trucks,

four drones, and four packages, even though it fails to prove the

optimality of the incumbent in 10 minutes, their returned solutions

largely reduce the makespan of the first returned solutions.

7.4 MILP Model Study
Now, we study the MILP models of the three benchmarked domains.

Table 3 shows the numbers of integer variables 𝒱𝐼 , continuous
variables 𝒱𝐶 , and constraints𝐶 in our original encoding (Section 5),

as well as those (i.e.,𝒱 ′
𝐶
,𝒱 ′
𝐼
, C’) in themodel that has been presolved

by Gurobi. Gurobi presolves a MILP model by compiling it into a

smaller model with equivalent feasible and optimal solutions as

the original. As we can see in Table 3, the presolved models reduce

about 20% continuous variables, 20 ∼ 40% integer variables, and

30 ∼ 50% constraints in most examples. We also observed that

presolving takes less than 0.1𝑠 in our experiments.

As the Mars domain does not have many discrete state variables

or actions, the numbers of its discrete variables and continuous

variables are roughly the same. When it comes to the air refueling

domain with more than 8 regions to visit or the truck-and-drone

delivery domainwith a large number of discrete variables to indicate

trucks are on a certain highway, we observe the number of discrete

variables is 2 ∼ 5 times than that of continuous variables. We also

note that it is more difficult to find provably optimal solutions in the

MILP problems with more integer variables. While Gurobi can find

a solution for all the examples in 2𝑠 even for Delivery (d), which

has 1511 variables and 34130 constraints, the largest problem we

can prove optimality within the runtime limit is Delivery (b), which

has 537 variables and 7610 constraints.

8 CONCLUSIONS
In this paper, we presented a mixed discrete-continuous planning

approach that fixes the action number of the automaton runs and

encodes the corresponding finite-step hybrid planning problem as

a MILP. Our complexity analysis shows that the number of the

MILP variables and constraints at each step increases linearly with

the product of the number of linear constraints involved in each

condition and the number of operators and variables. By leveraging

the state-of-the-art MILP optimizer Gurobi, our method is able

to efficiently find provably optimal or high-quality solutions for

challenging mixed discrete-continuous planning problems. This

was supported by our experimental results against Scotty on the

Mars transportation domains, the air refueling domains, and the

truck-and-drone delivery domains.

Acknowledgements. The authors acknowledge support from the

DARPA Assured Autonomy under contract FA8750-19-C-0089 and

the DARPA Creative Problem Solver under contract N16A-T002-

0149. The views, opinions and/or findings expressed are those of

the authors and should not be interpreted as representing the of-

ficial views or policies of the Department of Defense or the U.S.

Government.

REFERENCES
[1] Arthur Bit-Monnot, Luca Pulina, and Armando Tacchella. 2019. Cyber-Physical

Planning: Deliberation for Hybrid Systems with a Continuous Numeric State. In

Proceedings of the International Conference on Automated Planning and Scheduling,
Vol. 29. 49–57.

[2] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, and Martin Wehrle.

2015. PDDL+ planning with hybrid automata: Foundations of translating must

behavior. In Twenty-Fifth International Conference on Automated Planning and
Scheduling.

[3] Sergiy Bogomolov, Daniele Magazzeni, Andreas Podelski, and Martin Wehrle.

2014. Planning as model checking in hybrid domains. In Twenty-Eighth AAAI
Conference on Artificial Intelligence.

[4] Daniel Bryce. 2016. A happening-based encoding for nonlinear pddl+ planning.

In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence.
[5] Daniel Bryce, Sicun Gao, David J Musliner, and Robert P Goldman. 2015. SMT-

Based Nonlinear PDDL+ Planning.. In AAAI. 3247–3253.
[6] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni. 2016. A

compilation of the full PDDL+ language into SMT. (2016).

[7] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. 2000.

NuSMV: a new symbolic model checker. International Journal on Software Tools
for Technology Transfer 2, 4 (2000), 410–425.

[8] Amanda Coles, M Fox, and D Long. 2013. A hybrid LP-RPG heuristic for modelling

numeric resource flows in planning. Journal of Artificial Intelligence Research 46

(2013), 343–412.

[9] Amanda Jane Coles, Andrew I Coles, Maria Fox, and Derek Long. 2012. COLIN:

Planning with continuous linear numeric change. Journal of Artificial Intelligence
Research 44 (2012), 1–96.

[10] Giuseppe Della Penna, Daniele Magazzeni, and Fabio Mercorio. 2012. A universal

planning system for hybrid domains. Applied intelligence 36, 4 (2012), 932–959.
[11] Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh Viswanathan. 2018. Con-

troller synthesis made real: reach-avoid specifications and linear dynamics. In

International Conference on Computer Aided Verification. Springer, 347–366.
[12] Chuchu Fan, Umang Mathur, Sayan Mitra, and Mahesh Viswanathan. 2018.

Controller Synthesis Made Real: Reachavoid Specifications and Linear Dynam-

ics. In Computer Aided Verification. Springer International Publishing, 347–366.
https://doi.org/10.1007/978-3-319-96145-3_19

[13] Enrique Fernandez-Gonzalez, Erez Karpas, and Brian Williams. 2017. Mixed

discrete-continuous planning with convex optimization. In Thirty-First AAAI
Conference on Artificial Intelligence.

[14] Enrique Fernández-González, Brian Williams, and Erez Karpas. 2018. Scottyac-

tivity: Mixed discrete-continuous planning with convex optimization. Journal of
Artificial Intelligence Research 62 (2018), 579–664.

[15] Ioannis Filippidis, Sumanth Dathathri, Scott C. Livingston, Necmiye Ozay, and

Richard M. Murray. 2016. Control design for hybrid systems with TuLiP: The

Temporal Logic Planning toolbox. In IEEE Conference on Control Applications.
1030–1041.

[16] Ioannis Filippidis, Sumanth Dathathri, Scott C Livingston, Necmiye Ozay, and

Richard M Murray. 2016. Control design for hybrid systems with TuLiP: The

temporal logic planning toolbox. In 2016 IEEE Conference on Control Applications
(CCA). IEEE, 1030–1041.

[17] Maria Fox and Derek Long. 2003. PDDL2. 1: An extension to PDDL for expressing

temporal planning domains. Journal of artificial intelligence research 20 (2003),

61–124.

[18] Maria Fox and Derek Long. 2006. Modelling mixed discrete-continuous domains

for planning. Journal of Artificial Intelligence Research 27 (2006), 235–297.

[19] Goran Frehse. 2008. PHAVer: algorithmic verification of hybrid systems past

HyTech. International Journal on Software Tools for Technology Transfer 10, 3
(2008), 263–279.

[20] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray,

Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler.

2011. SpaceEx: Scalable verification of hybrid systems. In International Conference
on Computer Aided Verification. Springer, 379–395.

[21] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2015. FFRob:

An efficient heuristic for task and motion planning. In Algorithmic Foundations
of Robotics XI. Springer, 179–195.

[22] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. 2017.

Sample-Based Methods for Factored Task and Motion Planning.. In Robotics:
Science and Systems.

[23] Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack Kaelbling. 2018. FFRob:

Leveraging symbolic planning for efficient task and motion planning. The Inter-
national Journal of Robotics Research 37, 1 (2018), 104–136.

[24] Antoine Girard. 2012. Controller synthesis for safety and reachability via approx-

imate bisimulation. Automatica 48, 5 (2012), 947–953.
[25] Incorporate Gurobi Optimization. 2020. Gurobi optimizer reference manual. URL

http://www. gurobi. com (2020).

[26] Malte Helmert. 2002. Decidability and Undecidability Results for Planning with

Numerical State Variables.. In AIPS. 44–53.

[27] ThomasAHenzinger, PeterWKopke, Anuj Puri, and Pravin Varaiya. 1998. What’s

decidable about hybrid automata? Journal of computer and system sciences 57, 1
(1998), 94–124.

[28] Sylvia L Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F Fisac, and Claire J

Tomlin. 2017. FaSTrack: A modular framework for fast and guaranteed safe

motion planning. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC). IEEE, 1517–1522.

[29] Jörg Hoffmann. 2003. The Metric-FF Planning System: Translating“Ignoring

Delete Lists”to Numeric State Variables. Journal of artificial intelligence research
20 (2003), 291–341.

[30] Jörg Hoffmann and Bernhard Nebel. 2001. The FF planning system: Fast plan

generation through heuristic search. Journal of Artificial Intelligence Research 14

(2001), 253–302.

[31] Andreas G Hofmann and Brian Charles Williams. 2006. Robust Execution of

Temporally Flexible Plans for Bipedal Walking Devices.. In ICAPS. 386–389.
[32] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. 2015. Fast

marching tree: A fast marching sampling-based method for optimal motion

planning in many dimensions. International Journal of Robotics Research 34, 7

(2015), 883–921.

[33] Leslie Pack Kaelbling and Tomás Lozano-Pérez. 2011. Hierarchical task and

motion planning in the now. In 2011 IEEE International Conference on Robotics
and Automation. IEEE, 1470–1477.

[34] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. 1996. Proba-

bilistic roadmaps for path planning in high-dimensional configuration spaces.

IEEE Transactions on Robotics and Automation 12, 4 (1996), 566–580.

[35] Marius Kloetzer and Calin Belta. 2008. A Fully Automated Framework for Control

of Linear Systems from Temporal Logic Specifications. IEEE Trans. Automat.
Control 53, 1 (2008), 287–297.

[36] Hadas Kress-Gazit, Gerogios E. Fainekos, and George J. Pappas. 2009. Temporal

Logic based Reactive Mission and Motion Planning. IEEE Transactions on Robotics
25, 6 (2009), 1370–1381.

[37] James J Kuffner and Steven M LaValle. 2000. RRT-Connect: An efficient approach

to single-query path planning. In IEEE International Conference on Robotics and
Automation, Vol. 2. IEEE, 995–1001.

[38] Fabien Lagriffoul, Neil T Dantam, Caelan Garrett, Aliakbar Akbari, Siddharth

Srivastava, and Lydia E Kavraki. 2018. Platform-independent benchmarks for

task and motion planning. IEEE Robotics and Automation Letters 3, 4 (2018),

3765–3772.

[39] Morteza Lahijanian, Lydia E Kavraki, and Moshe Y Vardi. 2014. A sampling-based

strategy planner for nondeterministic hybrid systems. In 2014 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 3005–3012.

[40] Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Luca Cardelli, and Marta

Kwiatkowska. 2020. Formal and efficient synthesis for continuous-time linear

stochastic hybrid processes. IEEE Trans. Automat. Control (2020).
[41] Hui X Li and Brian C Williams. 2008. Generative Planning for Hybrid Systems

Based on Flow Tubes.. In ICAPS. 206–213.
[42] Nancy Lynch, Roberto Segala, Frits Vaandrager, and Henri B Weinberg. 1995.

Hybrid i/o automata. In International Hybrid Systems Workshop. Springer, 496–
510.

[43] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, 152–166.

[44] Kaushik Mallik, Anne-Kathrin Schmuck, Sadegh Soudjani, and Rupak Majumdar.

2018. Compositional synthesis of finite-state abstractions. IEEE Trans. Automat.
Control 64, 6 (2018), 2629–2636.

[45] Sebti Mouelhi, Antoine Girard, and Gregor Gössler. 2013. CoSyMA: A Tool for

Controller Synthesis Using Multi-scale Abstractions. In International Conference
on Hybrid Systems: Computation and Control. ACM, 83–88.

[46] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. 2013. Falsification of LTL

safety properties in hybrid systems. International Journal on Software Tools for
Technology Transfer 15, 4 (2013), 305–320.

[47] Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M Murray, and

Sanjit A Seshia. 2015. Reactive synthesis from signal temporal logic specifications.

In Proceedings of the 18th international conference on hybrid systems: Computation
and control. 239–248.

[48] Pritam Roy, Paulo Tabuada, and Rupak Majumdar. 2011. Pessoa 2.0: A Controller

Synthesis Tool for Cyber-physical Systems. In International Conference on Hybrid
Systems: Computation and Control. ACM, 315–316.

[49] Matthias Rungger and Majid Zamani. 2016. SCOTS: A tool for the synthesis of

symbolic controllers. In Proceedings of the 19th international conference on hybrid
systems: Computation and control. 99–104.

[50] Paulo Tabuada. 2009. Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer.

[51] Paulo Tabuada and George J. Pappas. 2006. Linear Time Logic Control of Discrete-

Time Linear Systems. IEEE Trans. Automat. Control 51, 12 (2006), 1862–1877.
[52] Sean Vaskov, Shreyas Kousik, Hannah Larson, Fan Bu, James Ward, Stewart Wor-

rall, Matthew Johnson-Roberson, and Ram Vasudevan. 2019. Towards provably

not-at-fault control of autonomous robots in arbitrary dynamic environments.

https://doi.org/10.1007/978-3-319-96145-3_19

arXiv preprint arXiv:1902.02851 (2019).
[53] René Vidal, Shawn Schaffert, Omid Shakernia, John Lygeros, and Shankar Sastry.

2001. Decidable and semi-decidable controller synthesis for classes of discrete

time hybrid systems. In Proceedings of the 40th IEEE Conference on Decision and
Control (Cat. No. 01CH37228), Vol. 2. IEEE, 1243–1248.

[54] Kai Weng Wong, Cameron Finucane, and Hadas Kress-Gazit. 2013. Provably-

correct robot control with LTLMoP, OMPL and ROS. In IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2073.

[55] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M. Murray. 2012. Receding

Horizon Temporal Logic Planning. IEEE Trans. Automat. Control 57, 11 (2012),

2817–2830.

[56] TichakornWongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M.

Murray. 2011. TuLiP: A Software Toolbox for Receding Horizon Temporal Logic

Planning. In International Conference on Hybrid Systems: Computation and Control.
ACM, 313–314.

[57] TichakornWongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M

Murray. 2011. TuLiP: a software toolbox for receding horizon temporal logic

planning. In Proceedings of the 14th international conference on Hybrid systems:
computation and control. 313–314.

	Abstract
	1 Introduction
	2 Related work
	3 Problem Formulation
	4 finite-step Decision Problem
	5 Mixed Integer Linear Encoding
	5.1 Encoding Linear Constraint Formulas
	5.2 Encoding Finite-step Hybrid Planning
	5.3 Complexity Analysis
	5.4 Additional Techniques for Speeding up

	6 Temporally Concurrent Goals
	7 Experimental Results
	7.1 Mars Transportation Domain
	7.2 Air Refueling Domain
	7.3 Truck-and-Drone Delivery Domain
	7.4 MILP Model Study

	8 Conclusions
	References

