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Multi-agent Motion Planning from Signal Temporal
Logic Specifications

Dawei Sun1, Jingkai Chen2, Sayan Mitra1, and Chuchu Fan2

Abstract—We tackle the challenging problem of multi-agent
cooperative motion planning for complex tasks described using
signal temporal logic (STL), where robots can have nonlinear and
nonholonomic dynamics. Existing methods in multi-agent motion
planning, especially those based on discrete abstractions and
model predictive control (MPC), suffer from limited scalability
with respect to the complexity of the task, the size of the
workspace, and the planning horizon. We present a method
based on timed waypoints to address this issue. We show that
timed waypoints can help abstract nonlinear behaviors of the
system as safety envelopes around the reference path defined
by those waypoints. Then the search for waypoints satisfying
the STL specifications can be inductively encoded as a mixed-
integer linear program. The agents following the synthesized
timed waypoints have their tasks automatically allocated, and
are guaranteed to satisfy the STL specifications while avoiding
collisions. We evaluate the algorithm on a wide variety of
benchmarks. Results show that it supports multi-agent planning
from complex specification over long planning horizons, and
significantly outperforms state-of-the-art abstraction-based and
MPC-based motion planning methods. The implementation is
available at https://github.com/sundw2014/STLPlanning.

Index Terms—Task and Motion Planning; Path Planning for
Multiple Mobile Robots or Agents.

I. INTRODUCTION

THE capability of performing automatic task and motion
planning according to high-level specifications is what

people usually expect from an intelligent and autonomous
robotic system. These high-level task specifications usually
consist of temporal and logical rules and need cooperative
solutions of multiple agents. It is not straightforward to directly
derive a specific sequence of locations to visit for each agent
from these high-level specifications. Therefore, synthesizing
correct-by-construction plans and control strategies from these
complicated specifications has been an open problem, espe-
cially when the planning horizon is long and the robotic sys-
tems have complex dynamics [1], [2]. Fortunately, Temporal
Logic (TL), especially Signal Temporal Logic (STL) provides
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a mathematically precise language for specifying tasks and
rules over continuous signals with explicit time semantics [3].
Such a formal description of the task enables automatic control
action synthesis.

Methods based on discrete abstractions and model predictive
control (MPC) are two representative approaches for motion
planning from TL specifications. Abstraction-based methods
discretize the state space and create an abstract bisimilar graph
or automaton, on which the actual planning is performed.
MPC-based methods discretize the trajectory with a fixed
time step, and the states at each time step are viewed as the
decision variables of an optimization problem. Although these
methods have achieved success in a wide range of applications,
some obvious disadvantages prevents them from being widely
adopted for solving realistic robotic planning problems: To
use abstraction-based methods, one needs to construct the
bisimilar graph, which heavily relies on domain expertise.
Moreover, the number of abstracted states would potentially
grow exponentially fast as the dimensionality of the state space
increases and cause significant scalability issues. As for MPC-
based methods, the number of time steps needed might be too
large for long-horizon planning. In Sec. IV, we compare the
proposed method with those two methods.

In this paper, we propose a novel synthesis method which
tackles the aforementioned challenges. Inspired by the method
in [4] where the authors use piece-wise linear (PWL) reference
paths and tracking controllers to solve simple reach-avoid
synthesis problems, we show that using PWL reference paths
one can also handle more expressive STL specifications.
A PWL path is defined by a sequence of time-stamped
waypoints. Our method can automatically reason over the
STL formula by recursively encoding constraints over the
time-stamped waypoints according to the syntax of the STL
formula. Moreover, we define the multi-agent STL, which can
be used to specify tasks that need be completed cooperatively
by a group of agents. Given such a multi-agent STL formula,
our proposed method can automatically assign sub-tasks to
each agent such that they cooperate efficiently without colli-
sion. Because the tracking error of the tracking controller is
taken into account when encoding the constraints, it can be
shown that any solution that satisfy our encoded constraints
can give the desired PWL paths: Agents following the PWL
reference paths are guaranteed to satisfy the given multi-agent
STL specification and are collision-free. More importantly,
our constraints are all linear because of the PWL structure.
Therefore, we can find optimal solutions by solving mixed-
integer linear programming (MILP) problems, which can be

https://github.com/sundw2014/STLPlanning
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effectively handled by off-the-shelf solvers such as Gurobi1.
We evaluate the proposed method on 8 benchmark synthesis

problems with a variety of different scenarios. We compare
with both abstraction-based and MPC-based methods [5], [6].
Empirical results show that our method outperforms other
state-of-the-art methods in terms of running time and quality of
the planned paths, not to say that our method can handle much
more general STL formulas. For example, our method is order
of magnitude faster than stlcg [5], which is MPC-based
and solves the optimization problem with gradient decent.
Also, we implement and compare with another MPC-based
algorithm proposed in [6]. The MPC-based method failed in
some cases due to the large number of decision variables,
while our method successfully found a solution.

A. Related work

Robot motion planning is a large and active research
area [7], [8], [9], [10], and planning from TL specifications
has received significant attention [1], [11]. Abstraction-based
approaches have stood out as a systematic framework of
finding control policies [1], [12]. However, the abstraction step
of these approaches heavily relies on domain expertise and is
hard to be automated. Among all the planning methods that
can handle TL specifications, the closest to ours is the one
proposed in [13], which discretizes the workspace into regions,
constructs a graph with regions as nodes, and finally searches
for a valid path on the graph.

Another class of synthesis approaches for STL is based
on model predicative control (MPC), for example, [6], [14],
[15], [16], [17]. In these approaches, a time-step is fixed and
the decision variables of the optimization are just the state at
each step. Both the dynamics and the STL specifications are
encoded as constraints of the optimization problem. Thus, it
is challenging to handle real-world robots with complicated
dynamics. Another drawback of these approaches is that the
number of time steps needed might be too large for long-
horizon planning. The proposed approach tackles this problem
by using time-stamped waypoints instead of a fixed time step,
which is also similar to event-based control (e.g., [18]) in
the sense that each waypoint can be viewed as an event and
between two consecutive events the control input does not
change. Similar idea has been studied in [19], where the users
use zeroth-order hold control, i.e., the control signal is held
at a time instant (waypoint) for a variable interval. Different
from the proposed approach, it uses control barrier functions
to ensure satisfaction between timed waypoints.

Sampling-based methods have also been used to solve
planning problems for multi-agent systems and/or STL spec-
ifications. STyLuS∗ [20] is a scalable algorithm for multi-
agent optimal control with temporal logics. [21] utilizes RRT
to plan paths for long-term LTL goals with short-term reac-
tive specifications. In [22], the authors proposes the spatio-
temporal RRT* algorithm which can handle STL specifications
containing only “always” operators. In [23], the authors extend
the RRT∗ algorithm with biased space-time sampling and

1https://www.gurobi.com/

guided steering, and the algorithm is able to efficiently grow
the RRT tree along the direction of increasing STL satisfaction.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let R and Z+ be the real numbers and positive integers
respectively. For a vector x ∈ Rn, x(i) is its ith entry, ∥x∥ is
its Euclidean norm, ∥x∥1 is its one-norm, and Bϵ(x) := {y ∈
Rn | ∥y − x∥ ≤ ϵ} is the ϵ-ball centered at x. Given a matrix
H ∈ Rn×m and a vector b ∈ Rn, Poly(H, b) denotes the
convex polytope {x ∈ Rm | H ·x ≤ b}. H(i) is the ith row of
H , and Row(H) denotes the number of rows in H , which is
also the number of faces of the polytope. For N ∈ Z+, denote
{1, · · · , N} by [N ].

A. STL for multi-agent specifications

Let W := Rd be the workspace. Given a vector-valued
function µ defined on W , an atomic predicate can be defined
based on µ and is denoted by πµ. For a point x ∈ W , we
say that x satisfies πµ (written as x ⊨ πµ) iff. µ(x) ≥ 0.
In this paper, we are only interested in atomic predicates that
indicate whether or not a point is in a polytope. That is, µ
is always of the form µ(x) = b − H · x. Then, x ⊨ πµ

iff. x ∈ Poly(H, b). Also, x ⊭ πµ iff. x /∈ Poly(H, b).
Atomic predicates only characterize standalone points in the
workspace. However, we are more interested in predicates that
can characterize trajectories. Let p : R≥0 7→ W be the position
trajectory of a robot, which is a function of time. Let (p, t)
be the suffix of p at t, i.e., (p, t)(s) = p(s+ t). Next, STL is
defined based on the atomic predicates.

Definition 1 (Signal Temporal Logic (STL)). An STL formula
is defined with the following syntax:

φ ::= πµ|¬πµ|φ1 ∧ φ2|φ1 ∨ φ2

|♢[a,b]φ|□[a,b]φ|φ1U[a,b]φ2|φ1R[a,b]φ2

(1)

where φ,φ1, φ2 are STL formulas, and 0 ≤ a ≤ b < ∞
denote time intervals. Here, the temporal operators ♢,□,U ,R
are called “eventually”, “always”, “until”, and “release”
respectively. Formally, the validity of an STL formula with
respect to a trajectory p : R≥0 7→ W is defined as follows.

p ⊨ φ ⇔ (p, 0) ⊨ φ

(p, t) ⊨ πµ ⇔ µ (p(t)) ≥ 0

(p, t) ⊨ ¬πµ ⇔ (p, t) ⊭ πµ

(p, t) ⊨ φ1 ∧ φ2 ⇔ (p, t) ⊨ φ1 ∧ (p, t) ⊨ φ2

(p, t) ⊨ φ1 ∨ φ2 ⇔ (p, t) ⊨ φ1 ∨ (p, t) ⊨ φ2

(p, t) ⊨ ♢[a,b]φ ⇔ ∃t′ ∈ [t+ a, t+ b] , (p, t′) ⊨ φ

(p, t) ⊨ □[a,b]φ ⇔ ∀t′ ∈ [t+ a, t+ b] , (p, t′) ⊨ φ

(p, t) ⊨ φ1U[a,b]φ2 ⇔ ∃t′ ∈ [t+ a, t+ b] , (p, t′) ⊨ φ2

∧ ∀t′′ ∈ [t, t′] , (p, t′′) ⊨ φ1

(p, t) ⊨ φ1R[a,b]φ2 ⇔ ∀t′ ∈ [t+ a, t+ b] , (p, t′) ⊨ φ2

∨ ∃t′′ ∈ [t, t′] , (p, t′′) ⊨ φ1

Please note that in the above syntax, negation can only be
applied to atomic predicates. This is known as the Negation
Normal Form and is not restrictive because any STL formula
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can be put in this form [7]. The above definition of STL only
characterizes a single trajectory p. Next, we define the multi-
agent STL (MA-STL), which extends the notion of STL to
cases where multiple trajectories are considered.

Definition 2 (Multi-agent STL (MA-STL)). An N -agent STL
formula is defined recursively with the following syntax:

Ψ ::= πφ
i |Ψ1 ∧Ψ2|Ψ1 ∨Ψ2,

where Ψ1,Ψ2 are N -agent STL formulas, and πφ
i assigns a

single-agent STL φ to agent i. Formally, the validity an MA-
STL w.r.t. a group of trajectories (p1, · · · , pN ) is as follows.

(p1, · · · , pN ) ⊨ πφ
i ⇔ pi ⊨ φ,

(p1, · · · , pN ) ⊨ Ψ1 ∧Ψ2 ⇔ (p1, · · · , pN ) ⊨ Ψ1

and (p1, · · · , pN ) ⊨ Ψ2,

(p1, · · · , pN ) ⊨ Ψ1 ∨Ψ2 ⇔ (p1, · · · , pN ) ⊨ Ψ1

or (p1, · · · , pN ) ⊨ Ψ2.

Remark. Firstly, MA-STL enables implicit task assignment.
For example, let {Gi}Mi=1 be M goals, which are atomic
predicates defining some polytopes in the workspace. The
MA-STL formula Ψ =

∧M
j=1

∨N
i=1 π

♢[0,T ]Gj

i assigns tasks
to the agents implicitly. That is, it does not assign specific
tasks to each agent, but requires each goal to be visited by
at least one agent. As will be shown in Sec. IV, with the
proposed planning algorithm, agents can figure out the optimal
assignment automatically. Secondly, please also note that MA-
STL is only a syntactic sugar in the sense that it is a subset
of the STL formulas defined over the joint state space of the
multi-agent system. In this subset, temporal operations can
only be applied to a single agent at a time.

B. Tracking controllers for the agents

In practice, the robots used to complete a task usually have
complicated and nonlinear dynamics, which makes it difficult
to directly synthesize the correct control input for them. As
a famous aphorism goes: “all problems in computer science
can be solved by another level of indirection”, we exploit a
separation of concerns that exists in the robot control synthesis
problem so that complexity of specifications (tasks) and that
of the dynamics can be dealt with separately. Specifically,
we assume that a tracking controller is given for each agent
such that it can track any reference path under any bounded
disturbances with an known tracking error ϵ > 0.2 That is,
the distance between the actual position of the robot and
the desired position on the reference path is always upper
bounded by ϵ. Many techniques can be used for obtaining
such a tracking controller and the corresponding tracking
error, for example, control Lyapunov functions [24] or control
contraction metrics [25]. Here, the tracking controller is an
abstraction (or the so-called “indirection”) layer that wraps the
underlying dynamics such that the closed-loop system has a
uniform behavior (characterized by the tracking error bound),
and thus makes the design of motion planners easier.

2This is true when the reference paths satisfy the requirements of the
controller, for example, the velocity is bounded.

Obviously, controlled by the tracking controller, the actual
trajectory of the agent will be in a tube centered at the
reference path. If one can show that every trajectory in this
tube satisfy the specification, then it can be guaranteed that
the actual trajectory of the agent will satisfy the specification
in the presence of any bounded disturbances. To this end, we
define the robustness of trajectories.

Definition 3 (ϵ-robust). A group of trajectories (p1, · · · , pN )
is said to be ϵ-robust with respect to a property for some
ϵ > 0, if the property holds for all (p̂1, · · · , p̂N ) satisfying
supt ∥p̂i(t)− pi(t)∥2 ≤ ϵ, ∀i ∈ [N ].

C. The MA-STL motion planning problem

Next, we define the multi-agent motion planning problem.
Intuitively, the goal is to find a group of reference paths that
are ϵ-robust to a given MA-STL specification and free of inter-
agent collisions. Assume that N agents are involved and T is
the time bound. Denote the size of the i-th agent by si > 0.
That is, at position p ∈ W , the agent is completely contained
in a ball around it of radius si, i.e., Bsi(p). Then, the planning
problem is defined as follows.

Definition 4 (MA-STL Motion Planning). A MA-STL motion
planning problem is defined by a tuple

⟨pinit1 , · · · , pinitN ,Ψ⟩,

where piniti ∈ W is the initial position of agent i and Ψ is an
MA-STL formula. The problem is to find a group of reference
paths (p1, · · · , pN ) satisfying the following conditions:

1) (Initial conditions) pi(0) = piniti , ∀i ∈ [N ].
2) (No inter-agent collisions) ∀t ∈ [0, T ], ∀i, j ∈ [N ] and

i ̸= j, Bsi+ϵ(pi(t)) ∩Bsj+ϵ(pj(t)) = ∅.
3) (STL Satisfaction) (p1, · · · , pN ) are ϵ-robust w.r.t. Ψ.

Instead of searching for the reference paths among all
possible functions of time, the proposed approach restricts its
search space to piece-wise linear (PWL) paths. In the rest of
the paper, we refer to the reference PWL path for agent i as
Si. Formally, PWL paths are defined as follows.

Definition 5 (Piece-wise Linear Path). A piece-wise linear
path Si in the workspace W is a function Si : R≥0 → W that
maps a time instant t to a position Si(t) ∈ W . It is constructed
from a sequence of time-stamped waypoints {(ti,k, pi,k)}Ki

k=0

such that Si(t) = pi,k−1 +
pi,k−pi,k−1

ti,k−ti,k−1
(t − ti,k−1) for t ∈

[ti,k−1, ti,k]. Here, 0 = ti,0 ≤ ti,1 ≤ · · · ≤ ti,K are the
time stamps, and (ti,k, pi,k) ∈ R≥0 × W is called the kth

waypoint of path Si. The restriction of Si on the kth time
interval [ti,k−1, ti,k] is called the kth segment of Si and is
denoted by S

(k)
i .

III. SOLVING THE PLANNING PROBLEMS USING MILP

Overview of the approach. We formulate the problem of
finding PWL paths satisfying the specifications (inter-agent
collision avoidance and STL satisfaction) as a constrained
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optimization problem and solve its mixed-integer linear pro-
gramming (MILP) encoding using off-the-shelf optimizers
such as Gurobi. The optimization problem is as follows:

min
C

L(C)

s.t. (S1, · · · , SN ) satisfy the conditions in Def. 4.
(2)

where C :=
⋃N

i=1

⋃Ki

k=0{ti,k, pi,k} is the set of variables
representing the time stamps and waypoints on the PWL
reference paths (S1, · · · , SN ), and {Ki}Ni=1 are constants.
Here, L is a linear cost function. For example, one can
minimize the total travel time, L(C) =

∑N
i=1 ti,Ki

. One can
also minimize the makespan using L(C) = Tmakespan with
extra linear constraints Tmakespan ≥ ti,Ki , i = 1, · · · , N .

In order to solve the above optimization problem as a MILP
problem, the constraint in Eq. (2) must be transformed into
a conjunction of linear constraints, where each constraint
is of the form LE ≥ 0, and LE is a linear expression
of the decision variables. In addition to the aforementioned
continuous variables C, the decision variables of the MILP
problem will contain another set of variables B that are the
binary variables introduced when encoding logic relations.
Also, this transformation must be sound, i.e., the feasible set
defined by the linear constraints should be a subset of the
original feasible set in Eq. (2).

In our approach, we first convert the original constraint in
Eq. (2) into a linear constraint formula (LCF), which is a
logic sentence of atomic formulas connected by conjunction
or disjunction operators. The atomic formulas are of the form
LEC ≥ 0, where LEC is a linear expression of the continuous
variables C. Then, the disjunctions in the LCF are eliminated
using the big-M method, and binary variables B are introduced
in this step. After eliminating all the disjunctions, the LCF
becomes a conjunction of linear constraints.

This section is structured as follows. We first show how to
transform the STL satisfaction and inter-agent collision avoid-
ance into LCFs in Section III-A and Section III-B respectively.
In Section III-C, we show the overall algorithm.

A. Encoding MA-STL satisfactions with LCFs

In this section, we consider the problem of encoding an
MA-STL specification Ψ with LCFs. Recall the syntax of MA-
STL in Definition 2. In an MA-STL formula Ψ, there are only
conjunction and disjunction operations in addition to single-
agent STL formulas. Thus, if we can find an LCF for each
single-agent STL formula πφ

i in Ψ, then these LCFs can be
directly combined with conjunctions and disjunctions to get
the LCF for Ψ. Hence, in this section, we only consider the
encoding of single-agent STL formulas, and the subscript i is
omitted for simplicity. In conclusion, given an STL formula
φ and the tracking error ϵ > 0, we aim at obtaining an LCF
over the time-stamped waypoints {tk, pk}Kk=0 such that if this
LCF is true then the PWL path is ϵ-robust to φ.

Such an LCF can be constructed inductively. We will
construct an LCF for each of the K segments of S and denote
them by zφi , i = 0, 1, · · · ,K−1. We want zφi to have a strong
soundness property: zφi is true =⇒ ∀t ∈ [ti, ti+1], (p, t) ⊨
φ for any trajectory p deviating from S up to the tracking

error ϵ, i.e., starting from any time point on the segment, φ is
satisfied robustly. Once we obtain such LCFs for φ, zφ0 is just
the LCF we ultimately want. Fortunately, LCFs with such a
property can be encoded inductively starting from the atomic
predicates and their negations.

For an atomic predicate φ = πµ or its negation ¬πµ, where
µ(x) := b −H · x, it is easy to construct zφi by shrinking or
bloating Poly(H, b) as follows.

zπ
µ

i =

Row(H)∧
j=1

((
b(j) −H(j) · pi − ϵ∥H(j)∥2 ≥ 0

)
∧
(
b(j) −H(j) · pi+1 − ϵ∥H(j)∥2 ≥ 0

))
;

(3)

z¬πµ

i =

Row(H)∨
j=1

((
H(j) · pi − b(j) − ϵ∥H(j)∥2 ≥ 0

)
∧
(
H(j) · pi+1 − b(j) − ϵ∥H(j)∥2 ≥ 0

))
.

(4)

It is easy to verify that the constructed z formulas have
the aforementioned soundness property. Intuitively, Eq. (3)
requires both endpoints of the i-th segment of S to be in the
shrunk polytope, which is sufficient for the whole segment to
be in the polytope. Eq. (4) requires both endpoints to be on
the outside of at least one face of the bloated polytope, which
is sufficient for the whole segment to be outside the polytope.

For non-atomic predicates, its z formula will depend on
the z formulas of its sub-predicates, e.g., z□[a,b]φ depends on
zφ. The principle behind the design of the encoding rules
is induction: we should guarantee that the aforementioned
soundness property holds for the resulting z formula if it holds
for all the z formulas of the sub-predicates (i.e., the z formulas
on the right-hand side of the below encoding rules).

For conjunctions and disjunctions, it is simply zφ1∧φ2

i =
zφ1

i ∧ zφ2

i ; zφ1∨φ2

i = zφ1

i ∨ zφ2

i .
Temporal operators are handled as follows.

z
□[a,b]φ

i =

K−1∧
j=0

(
[tj , tj+1] ∩ [ti + a, ti+1 + b] ̸= ∅ ⇒ zφj

)
; (5)

z
♢[a,b]φ

i = (ti+1 − ti ≤ b− a)

∧
K−1∨
j=0

(
[tj , tj+1] ∩ [ti+1 + a, ti + b] ̸= ∅ ∧ zφj

)
; (6)

z
φ1U[a,b]φ2

i = (ti+1 − ti ≤ b− a)∧
K−1∨
j=0

(
[tj , tj+1] ∩ [ti+1 + a, ti + b] ̸= ∅ ∧ zφ2

j

∧
j∧

l=0

([tl, tl+1] ∩ [ti, ti+1 + b] ̸= ∅ =⇒ zφ1
l )

)
; (7)

z
φ1R[a,b]φ2

i =

K−1∧
j=0

((
[tj , tj+1] ∩ [ti + a, ti+1 + b] ̸= ∅

⇒ zφ2
j

)
∨

j−1∨
l=0

([tl, tl+1] ∩ [ti+1, ti+1 + b] ̸= ∅ ∧ zφ1
l )

)
. (8)



SUN et al.: MULTI-AGENT MOTION PLANNING FROM SIGNAL TEMPORAL LOGIC SPECIFICATIONS 5

With the above rules of encoding, we can encode any
STL formula as an LCF as follows. As mentioned earlier,
zφ0 is what we ultimately want. In order to obtain zφ0 , all
of its dependencies on other z formulas have to be resolved.
Therefore, the algorithm runs recursively. The recursion stops
at atomic predicates since they do not depend on any other z
formulas as shown in Eq. (3) and Eq. (4).

In order to prove the aforementioned soundness property,
we proceed by induction. The base cases are the atomic
predicates (Eq. (3) and (4)), for which we have provided
some intuitions earlier. Then, the induction step has to be
verified for each non-atomic predicate. The verification is
straightforward but tedious. Here, we only verify the one
for the “□” operation in Eq. (5). The induction hypothesis
is that the soundness property holds for all z formulas on
the RHS of Eq. (5). Considering any trajectory p deviating
from S up to ϵ, by induction hypothesis, if zφj is true, then
∀t ∈ [tj , tj+1], (p, t) ⊨ φ. For any t ∈ [ti, ti+1] and any
t′ ∈ [t+a, t+b], we must have that t′ ∈ [ti+a, ti+1+b]. Now,
assume that z

□[a,b]φ

i is true. Let j be such that t′ ∈ [tj , tj+1].
Then, [ti + a, ti+1 + b] ∩ [tj , tj+1] ̸= ∅. According to the
encoding, this implies that zφj is true. By induction hypothesis,

we have that (p, t′) ⊨ φ. To summarize, if z
□[a,b]φ

i is true,
then ∀t ∈ [ti, ti+1], ∀t′ ∈ [t+ a, t+ b], (p, t′) ⊨ φ, which is
equivalent to say that ∀t ∈ [ti, ti+1], (p, t) ⊨ □[a,b]φ. Thus, we
have proved the soundness property for z

□[a,b]φ

i . A complete
proof can be found in Appendix of [26].

Remark. With the above proof, it should be clear that al-
though the encoding rules are stronger than we would need,
i.e., zϕi encodes satisfaction over the entire segment, and thus
make the problem harder to solve, it is indeed necessary.
Otherwise, the induction does not hold.

B. Encoding inter-agent collision avoidance with LCFs

We consider the problem of encoding the inter-agent colli-
sion avoidance with LCFs. Specifically, we aim at obtaining
an LCF such that if this LCF is true, then at any time, the
distance between any two agents is safe. First, let us consider
how to encode the specification that two time-stamped line
segments are at least ϵ away from each other, which will be
the building block for encoding the inter-agent collision avoid-
ance specification. Consider two time-stamped line segments,
SEG1 and SEG2. Let the endpoints of SEG1 be (t11, p11) and
(t12, p12). Similarly, (t21, p21) and (t22, p22) are the endpoints
of SEG2. Define a function safe () mapping them to an LCF
as follows.

safe (SEG1, SEG2, ϵ) := ([t11, t12] ∩ [t21, t22] = ∅)

∨

(∥∥∥∥p11 + p12
2

− p21 + p22
2

∥∥∥∥
1

≥∥∥∥∥p11 − p12
2

∥∥∥∥
1

+

∥∥∥∥p21 − p22
2

∥∥∥∥
1

+ ϵ
√
d

)
,

where d is the dimensionality of the workspace. Intuitively, if
the above LCF is true, either of the following two conditions

is true. 1) the two segments are disjoint in the time dimension;
or 2) in the spatial dimension, the distance between the two
centers is greater than the summation of the half-lengths of the
two segments with a margin ϵ, and thus they are disjoint. Then,
the specification that all the agents will not collide with each
other is encoded as follows.

zinter =

N∧
i,j=1
i ̸=j

∧
k=1,...,Ki
l=1,...,Kj

safe
(
S
(k)
i , S

(l)
j , 2ϵ+ si + sj

)
,

which is, again, an LCF of the decision variables⋃N
i=1

⋃Ki

k=0{ti,k, pi,k}. Recall that si is the size of agent i.
Please also note that we use 1-norm instead of 2-norm in the
encoding to make the resulting expression linear (or at least
piece-wise linear). Also, a formal proof of soundness can be
found in Appendix of [26].

C. Overall algorithm

In this section, we show the overall algorithm. Each step of
the algorithm is explained in the following.
Construct an AND-OR tree. In Section III-A and Sec-
tion III-B, we have shown how to transform the STL satisfac-
tion and inter-agent collision avoidance to LCFs. These LCF
formulas can be further merged with conjunctions and disjunc-
tions into a single LCF. Such an LCF can be represented as
an AND-OR tree. There are three types of nodes in the tree,
AND nodes (i.e., conjunctions), OR nodes (i.e., disjunctions),
and leaf nodes. Each AND or OR node has a finite number
of children. Each leaf node refers to a linear expression LE.
Additional constraints. Firstly, we need additional constraints
for the time instants. For each PWL path Si, we need 0 =
ti,0 ≤ ti,1 ≤ · · · ≤ ti,Ki

≤ T , where T is a constant specified
by the user. Secondly, the maximum velocity of the PWL paths
should also be constrained. For each PWL path Si,

∥pi,k+1−pi,k∥1 ≤ vmax∗(ti,k+1−ti,k), k = 0, 1, · · · ,Ki−1,

where vmax is a constant specified by the user. Finally, the
PWL path must start from the initial position of the agent, i.e.,
pi,0 = piniti . Please note that all these constraints are linear
and can be easily merged into the AND-OR tree.
Create MILP constraints from the AND-OR tree. In order
to create MILP constraints, we have to eliminate all the
disjunctions in the tree so that the whole tree is converted into
a conjunction of linear constraints, i.e.,

∧
i LEi ≥ 0. Then, we

can add each LEi ≥ 0 as a linear constraint to the MILP opti-
mizer. To eliminate the disjunctions, we use the big-M method.
For example, given an OR node,

∨n
i=1 LEi ≥ 0, we introduce

n binary variables zi, i = 1, · · · , n. Then, it can be shown
that the conjunctive form (

∧n
i=1 LEi + (1− zi) ·M ≥ 0) ∧

(
∑n

i=1 zi ≥ 1) is equivalent to the original disjunctive form,
where M is a large enough positive constant. Intuitively, if
zi = 1, then LEi + (1 − zi) · M ≥ 0 becomes the original
constraint LEi ≥ 0. On the other hand, if zi = 0, then LEi ≥ 0
is disabled since LEi +M ≥ 0 is trivially true regardless of
the value of LEi. Finally,

∑n
i=1 zi ≥ 1 enforces that at least

one of the constraints is enabled.
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Putting it all together. The algorithm first creates continuous
variables in the optimizer, which represents the waypoints.
Then, it constructs the AND-OR tree of the linear constraints.
Next, disjunctions in the tree are eliminated, and the tree is
converted into a list of linear constraints, which are then added
to the optimizer. After the optimizer finds a feasible solution,
the values of the continuous variables are returned, which
determine the PWL paths.
Complexity. The computational cost of solving a MILP prob-
lem is mostly determined by the number of binary variables.
Therefore, we analyze the number of binary variables intro-
duced for encoding an STL formula φ with respect to a PWL
path of length K. Due to the use of the big-M method, each
child of an OR node in the AND-OR tree introduces a binary
variable. As in Eq. (6-8), each z formula consists of O(K)
disjunctions.3 Since each segment has a z formula, we will
have O(K2) disjunctions in order to encode a single operation.
Let |φ| be the number of operators in φ. The complexity of the
proposed approach is O(K2 · |φ|). For MPC-based methods
(e.g., [27]), the complexity of encoding is O(N ·|φ|), where N
is the number of time steps. Although the proposed approach
has a quadratic complexity while the MPC-based approach has
a linear complexity, in many practical cases, the time horizon
is long (and hence N is large) but the task can be completed
with very few line segments. In these cases, K2 ≪ N
and the proposed method drastically outperforms MPC-based
methods, which is empirically verified in the experiments in
Sec. IV. On the other hand, in cases where the time horizon is
small but the required number of segments is somehow large,
using a MPC-based approach could be a better choice.

IV. EXPERIMENTAL EVALUATION

We evaluate the proposed approach on several benchmark
scenarios and compare it with several other methods. The
algorithm is implemented in Python, and the Gurobi optimizer
is used for solving the MILP problems. The implementation
is available at https://github.com/sundw2014/STLPlanning. As
for the robot dynamics, we use the Dubins vehicle model. All
experiments were conducted on a Linux workstation with two
Intel Xeon Silver 4110 CPUs and 32 GB RAM.

A. Benchmarks

Some of the benchmarks were borrowed from the motion
planning literature [28], [5]. We also designed several other
benchmarks in order to show the ability of the proposed
method to handle complicated MA-STL specifications. Specif-
ically, the following benchmarks are used.
stlcg-1 is from [5]. As shown in Fig. 1a, a robot

starting from the bottom-left corner is asked to visit the up-
right corner. It is also asked to visit and avoid some regions in
the middle. Denote the four regions by Y (yellow), B (blue), G
(green), and R (red) respectively. The task is specified using an
STL formula

(
♢[0,T ]□[0,5]R

)
∧
(
♢[0,T ]□[0,5]G

)
∧
(
□[0,T ]¬B

)
.

Please note that in the original benchmark, region B is a

3Please note that in the encoding of R, although there are O(K2)
disjunctions for a single segment, after merging the repeated ones, there are
only O(K) necessary disjunctions.

circle, and here we replace it with its circumscribed square.
stlcg-2 uses the same environment as in stlcg-1 but with
a different STL specification

(
♢[0,T ]□[0,5]Y

)
∧
(
□[0,T ]¬G

)
∧(

□[0,T ]¬B
)
.

doorpuzzle-1 is from [28]. As shown in Fig. 1c, a robot
is asked to visit the goal region (blue). However, there are
walls (black) and doors (red) in the environment. Before being
able to open a door, the robot has to visit the correspondingly
numbered green region to pick the key. Denote the goal by
G, the wall by W , the doors by D1, · · · , D5, and the keys
by K1, · · · ,K5. Then, the task can be specified using an
STL formula

(
♢[0,T ]G

)
∧
(
□[0,T ]¬W

)
∧
(∧5

i=1 ¬DiU[0,T ]Ki

)
.

doorpuzzle-2 is a similar scenario from [28] with 6 doors.
rover-1 and rover-2 are designed to evaluate the

ability to handle complicated multi-agent STL specifications.
As shown in Fig. 1e, rovers are asked to visit the goal regions
(green) to make scientific observations while conforming to
the following rules: 1) Every rover should visit the charging
station (blue) within tc time units every time they leave the
charging station; 2) After visiting a goal region, the rover
should visit a transmitter (yellow) within td time units, to
transmit the collected data to the remote control; 3) The rovers
should avoid the walls (black) and each other. Denote the
charging station by C, the walls by W , the transmitters by
S1 and S2, and the goals by G1, · · · , G4. Then, the rule
of charging can be encoded as φ1 := □[0,T ](¬C =⇒
♢[0,tc]C). The rule of transmitting can be encoded as φ2 :=

□[0,T ](
∨4

i=1 Gi =⇒ ♢[0,td]

∨2
i=1 Si). The rule of avoiding

walls can be encoded as φ3 := □[0,T ]¬W . Assuming that N
rovers are involved, the MA-STL specification encoding the
task is Ψ =

∧N
i=1 π

(φ1∧φ2∧φ3)
i ∧

∧4
j=1

∨N
i=1 π

♢[0,T ]Gj

i . We set
N = 1 and 2 for rover-1 and rover-2 respectively.
wall-1 and wall-2 are designed to evaluate the ability

to arrange multiple agents to avoid collisions. As shown in
Fig. 2a and Fig. 2b, a group of agents are asked to visit some
goal regions, but there is a narrow door in the middle of the
map. In order to avoid collisions, the agents have to figure out
an order for them to go through the door. Let the wall (black)
be W , and the goals be G1, · · · , G4. The task is specified as
Ψ =

∧4
i=1 π

□[0,T ]¬W∧♢[0,T ]Gi

i .

B. Comparison with other methods

We compared our method with others, including an MPC-
based method [6] and an abstraction-based method. Please
note that although [13] is the closest work to ours, the
authors did not provide a publicly available implementation
of their approach. Also, the benchmarks doorpuzzle-1 and
doorpuzzle-2 are borrowed from [28], but the authors did
not either provide an implementation of their algorithm or re-
port the run time of their algorithm on these two benchmarks.
Therefore, we were not able to compare with these approaches.
The details of the setup are as follows.

As stated earlier, the lengths of the PWL paths, i.e.,
K1,K2, · · · ,KN , are constants. In the experiments, we set
K = K1 = K2 = · · · = KN . Obviously, K should be
large enough, otherwise, the problem is not feasible. Thus,
we start from K = K, where K is an initial guess by the

https://github.com/sundw2014/STLPlanning
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(a) stlcg-1 (b) stlcg-2
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Figure 1: Benchmarks and results. Dashed-lines are the PWL paths found by the proposed method; Solid lines are the actual
trajectories tracking the PWL paths; The circle on the trajectory is the starting point, and star is the end.

(a) wall-1

(b) wall-2

Figure 2: Benchmarks and results. Dashed-lines are the PWL paths found by the proposed method; Solid lines are the actual
trajectories tracking the PWL paths. For each benchmark, we show four snapshots of the simulation with a clock in the title.
The dots indicate the current locations of the agents, and agents are marked in different colors.

user according to the task. If the problem is infeasible, we
increment K by 1 until the problem becomes feasible.

In [6], the authors proposed an MPC-based method of
planning paths from STL specifications. It also models the
planning as an MILP problem. The decision variables are just
the states of the system at ∆t, 2∆t, · · · , ⌈ T

∆t⌉∆t, where the
time step ∆t > 0 is a small constant specified by the user.
The dynamics of the robots are encoded as constraint of the
MILP problem. Furthermore, the authors of [6] proposed a
group of rules with which an STL formula can be converted
into linear constraints. In the experiments, we set ∆t = 0.1.
To make the comparison fair, we use a very simple dynamics
ẋ = u for MPC, i.e., an integrator. As for the inter-agent
collision avoidance requirement, we represent it as constraints
that at each time step, the distance between any pair of agents
must be greater than a threshold. Obviously, the performance
of MPC highly relies on the time horizon T . However, we
do not have an idea of how large T should be for completing
each benchmark. In order to determine a good time bound that
is not too large but large enough for completing the task, we
first run our algorithm with T = 1000 which is large enough
for all the benchmarks in this section. Our algorithm returns a
PWL path with the optimized travel time4. Then the makespan
of the planned PWL paths is used as the T when running the
MPC-based algorithm. Therefore, both the proposed method

4The solution is not exactly optimal. The precision of the solution de-
pends on one of Gurobi’s arguments, “MIPGap”. We always uses the same
“MIPGap” for MPC and our method.

Benchmark Ours (s) MPC (s) ABS (s)
stlcg-1 0.855 6.5 N/A
stlcg-2 0.175 4.0 N/A

doorpuzzle-1 49.5 TO N/A
doorpuzzle-2 175.6 2102.5 N/A

rover-1 180.5 TO N/A
rover-2 101.6 2733.7 N/A
wall-1 20.8 113.7 50.7
wall-2 172.9 163.7 79.1

Table I: Run time on benchmarks. MPC failed in some cases
due to time out (TO). ABS does not support general STL
scenarios and can only handle the last two benchmarks.

and the MPC-based method need a pre-process to determine
K or N . To make the comparison clear and fair, we did not
include the time spent for this pre-process in TABLE I.

We also implement an abstraction-based method based
on [29], [30], which uses a MILP-based approach for optimal
task assignment and ordering, and leverages the priority-based
search to plan collision-free trajectories to achieve all the
assigned tasks. It does not support general STL specifications
but supports the tasks in wall-1 and wall-2.

C. Observations

The results are summarized in TABLE I. Planned paths can
be found in Fig. 1 and Fig. 2. Some observations are in order.
Firstly, the proposed method can correctly solve planning
problems with complex STL specifications for multiple agents
(up to 4) while other methods in comparison failed in some
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cases. Secondly, the proposed method outperforms other meth-
ods in almost all cases in terms of run time. Thirdly, as shown
in Fig. 1 and Fig. 2, because the tracking error is taken into
account when planning the PWL paths, the actual trajectories
of the robots satisfy the STL specification although they
deviate from the reference PWL paths. Also, results show that
our algorithm is able to correctly figure out the logical ordering
of events with temporal constraints, then automatically assign
tasks to each agent and do essential arrangement to avoid
inter-agent collision. It is also worth mentioning that the
tool (stlcg) proposed in [5] also uses a fixed time step
and uses gradient decent to minimize the violation of the
STL specification. It takes minutes to find paths for its two
benchmark scenarios, stlcg-1 and stlcg-2, while our
method takes less than one second.

Furthermore, we evaluated the proposed approach
on selected benchmarks, including doorpuzzle-1,
doorpuzzle-2, wall-1, and wall-2, with real-world
robots on the Robotarium [31] platform. For the real robots,
we use the official tracking controller provided by the
Robotarium team, and the tracking error is estimated from
simulations using the official simulator. Experiments show
that with the proposed approach and the tracking controller,
the robots can safely complete the tasks. Videos can be found
in the supplementary material.

V. CONCLUSION

We introduced a novel method to synthesize long-horizon
motions of multi-agent robotic systems for STL specifications.
Our method can effectively encode complex specifications and
support long-time horizon synthesis due to the combinatorial
use of PWL reference paths and guaranteed tracking controller.
We plan to further reduce the complexity of the encoding rules
and support planning for larger-scale problems.
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