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Abstract
When a team of agents execute a mission in a distributed fash-
ion, they often communicate with each other to synchronize
their progress. However, in situations where communication
may be delayed, unavailable or costly, such as when a suite
of underwater vehicles is scouting an underwater area in the
ocean, pre-coordination is needed beforehand to compensate
for limited communication. Previous work proposed decou-
pling algorithms for Multi-Agent Simple Temporal Network
with Uncertainty (MaSTNU) in order to find decoupled ex-
ecution strategies for the agents, including communication
strategy, that satisfy all the inter-agent temporal constraints.
However, there is often the coupling between temporal and
state constraints, such as the constraint that the vehicles may
only communicate with each other when they are within a
certain distance. In this paper, we propose using Multi-Agent
Qualitative State Plan (MaQSP) that extends MaSTNU to in-
cluding continuous state constraints in order to model multi-
agent plans with coupled state and temporal constraints. We
describe a decoupling algorithm for MaQSP using a mixed-
integer linear programming (MILP) encoding, which includes
a novel path planning algorithm under temporal uncertainty.

Introduction
When multiple agents execute a shared task, the agents of-
ten depend on each other, resulting in inter-agent precedence
or synchronization constraints. To satisfy those constraints,
the agents communicate with each other to synchronize their
tasks and update their progress. However, in many cases,
the team may operate under limited communication, where
communication is not always available and may be delayed
or costly. For example, when deploying of a fleet of au-
tonomous underwater vehicles (AUVs) to scout an underwa-
ter area in the ocean, communication is mostly unavailable
as the AUVs are operating underwater, and has to be planned
ahead if communication is required.

Previous work has proposed modeling the multi-agent ex-
ecution problem as a Multi-Agent Simple Temporal Net-
work (MaSTN) (Hunsberger 2002; Boerkoel Jr and Dur-
fee 2013) or a Multi-Agent Simple Temporal Network with
Uncertainty (MaSTNU) (Casanova et al. 2016). They han-
dle limited communication between the team by finding de-
coupled execution strategies for the agents in the form of
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a set of local executable networks that depend only on ob-
servable information, which is called a temporal decoupling.
More specifically, the decoupling for a MaSTN completely
removes the need for communication, whereas MaSTNU ex-
plicitly models the available communication and its decou-
pling involves planning for how communication is used to
support the mission, resulting in a more flexible coordination
strategy. Additionally, MaSTNU also allows the modeling of
uncertain durations of activities. While MaSTNU addresses
the important problem of temporal coordination under lim-
ited communication, it fails to handle the case when there is
coupling between temporal constraints and state constraints.
In real-life deployments, the AUVs can only communicate
when they surface. While AUVs can communicate with each
other within a short distance, the ship often has a larger com-
munication range, and can communicate with both of them
over a much larger distance. Additionally, there may also
exist inter-agent state constraints such as when an AUV fin-
ishes its scouting mission, another AUV may want to pick
up the scouting mission from where the first AUV left off.
Previous work that considers multi-agent coordination with
both temporal constraints and continuous state constraints
only considers the problem under full observability, mod-
eled as a Qualitative State Plan (QSP) (Léauté and Williams
2005), and its solution is an execution strategy that assumes
the existence of a centralized authority that controls all the
agents (Fernández-González, Williams, and Karpas 2018;
Reeves, Fernández-González, and Williams 2019).

In this paper, we draw insights from the above work, and
propose using Multi-Agent Qualitative State Plan (MaQSP)
to model both the state and temporal constraints for multi-
agent plans under limited communication. With the addition
of continuous state constraints, MaQSP allows us to repre-
sent the common problem of combined temporal coordina-
tion and task planning. We describe a decoupling algorithm
for MaQSP by encoding the problem into a mixed-integer
linear program (MILP), which depends on a novel path plan-
ning algorithm for QSPs under temporal uncertainty assum-
ing first-order dynamics of the agents. Finally, we provide
preliminary experiment results on the algorithm.

Motivating Example
Consider a pedagogical example where two AUVs are de-
ployed from the ship on a scouting mission. The vehicle’s



position is a vector 〈x, y, d〉, where d is the depth and
d ≥ 0. The initial position is 〈0, 0, 5〉 for both AUVs,
and 〈0, 0, 0〉 for the ship. The ship is always above the
surface of the water, i.e. d = 0 throughout the mission.
AUV1 and AUV2 need to take a sample at science site L1
and L2, respectively. L1 region is a rectangular cuboid en-
closed by its two corners [〈65, 65, 6〉, 〈70, 70, 20〉] and L2 by
[〈−45, 35, 6〉, 〈−40, 40, 20〉]. Each of these sampling mis-
sions may take any time between 10 to 30 minutes. It is also
required that AUV2 must start its sampling mission within
15 minutes after AUV1 has finished its mission.

Notice that since the AUVs are operating underwater and
relatively distant from each other, they cannot observe each
other’s progress. As a result, AUV2 cannot observe when
AUV1 has finished its mission, which makes it difficult to
satisfy the inter-agent temporal constraint. However, it is
possible for the vehicles to communicate their progress by
notifying each other upon the occurrence of certain events,
though communication is costly and subject to certain con-
straints. The AUVs can communicate only when they sur-
face. The AUVs can communicate with each other if they are
within 30 meters of each other. The AUV and the ship can
communicate if they are within 100 meters of each other.

Our problem is to find a coordination strategy so that the
AUVs can successfully execute the mission. In this case, be-
cause the sampling mission may take any time between 10
to 30 minutes, which cannot be determined beforehand, it
becomes necessary for AUV1 to notify AUV2 upon finish-
ing its mission so that AUV2 can react in time to start its
mission within 15 minutes. Because the AUVs will be far
away from each other in their respective sampling missions,
the only possible way to communicate would be to relay the
communication from the ship. Additionally, since the AUVs
can only communicate when they surface, they must plan for
enough time to surface before communication.

Problem Definition
Multi-Agent Qualitative State Plan
We represent the above multi-agent plan by a Multi-Agent
Qualitative State Plan (MaQSP), which is an extension of
MaSTNU (Casanova et al. 2016) to capture both temporal
and state constraints. MaQSP introduces episodes in place
of the original temporal constraints, which is a concept from
Qualitative State Plan (QSP) (Léauté and Williams 2005).
We may also consider MaQSP as an extension of QSP to
the multi-agent context. Compared to the typical QSPs, our
definition allows the modeling of temporal uncertainty.
Definition 1 (QSP). A Qualitative State Plan (QSP) is a
tuple 〈V,X,EP 〉, where
• V is a set of events representing designated time points.
• X is a set of continuous state variables.
• EP is a set of episodes, where each episode ep ∈ EP is

a tuple 〈s, t, e, SC,DC〉, in which
– s, t ∈ V is the start and end event of the episode.
– e is a temporal constraint 〈s, t, lb, ub, ctg〉, where lb ∈
R ∪ {−∞}, ub ∈ R ∪ {+∞} is the lower bound and
upper bound from s to t, i.e. lb ≤ t − s ≤ ub, and ctg

Figure 1: Motivating example in MaQSP

is a Boolean indicating if e is a contingent constraint,
in which case, 0 ≤ lb < ub <∞.

– SC is a set of state constraints scoped on X .
– DC is a set of delta constraints, where dc(Xs, Xt) ∈
DC specifies a constraint between the state variables
evaluated at the start event and at the end event.

When the ctg flag is set to false, the temporal constraint
is a simple temporal constraint (Dechter, Meiri, and Pearl
1991), also referred to as a requirement constraint, that re-
quires the scheduling of two events to be within certain
lower bound and upper bound. When set to true, it is a simple
temporal contingent constraint (Vidal 1999), or a contingent
constraint for short, whose end event is an uncontrollable
event that cannot be directly controlled by the agent, but can
be observed when it occurs. A contingent constraint speci-
fies the bound in which the uncontrollable event may occur,
and there is a unique contingent constraint for each uncon-
trollable event. In our example, we can use contingent con-
straints to express that fact that it may take anytime between
10 to 30 minutes to take a sample, but the duration cannot be
determined beforehand. When an episode does not include
any state constraints, it is effectively a temporal constraint.

Under the multi-agent context, MaQSP can be considered
as a partition of QSP into a set of agents, resulting in a set of
agents’ local QSPs and additional inter-agent episodes.
Definition 2 (MaQSP). A Multi-Agent Qualitative State
Plan (MaQSP) is a tuple 〈NA, EX , CX , vZ〉, where
• Each Na ∈ NA is the local state plan for agent a ∈
A, which is a QSP 〈V a, Xa, EP a〉, where V a, Xa, and
EP a are the local events, local state variables, and local
episodes for agent a, respectively.

• EX ∪ CX is a set of external episodes, whose tempo-
ral constraint connects the local events of two different
agents. External requirement episodes EX and external
contingent episodes CX include a requirement and con-
tingent temporal constraint, respectively.

• vZ is a reference event, an absolute time point proceeding
all other events and shared by all agents, such as 12 pm.
Our motivating example can be formulated as a MaQSP

shown in Figure 1, where each event is represented by a cir-
cle and an episode is represented by an arrow pointing from
the start event to the end event, with contingent episodes rep-
resented by double arrows. The reference event vZ is the ini-
tial time point 12 pm. Each vehicle’s local state plan is high-
lighted in color, with AUV1 in yellow, AUV2 in blue and



the ship in green. For example, AUV1’s local state plan con-
sists of local events {vA, vB , vE , vF , vH} and episode epAB

represents its sampling mission at science site L1. The ex-
ternal requirement episode epHC represents the inter-agent
temporal constraint that AUV2 has to start its sampling mis-
sion within 15 minutes after AUV1 finishes its mission. The
external contingent episodes CX = {epEE′ , epFF ′ , epGG′}
are also referred to as the communication links that repre-
sent available communication between the agents. In this
case, we allow AUV1 to communicate to AUV2 once with
epEE′ , and similarly from AUV1 to the ship epFF ′ , and the
ship to AUV2 epGG′ . The timing of communication is un-
constrained. For example, epEE′ means that AUV2 can ob-
serve the occurrence of event vE′ within a delay of 1 min
after event vE is scheduled by AUV1, if they are within 30
meters of each other, AUV1’s depth is 0 at event vE , and
AUV2’s depth is 0 at event vE′ .

We characterize three types of state constraints allowed in
an episode ep = 〈vi, vj , e, SC,DC〉. Notation-wise, we use
Xi to denote the state variables X evaluated at event vi, and
a(vi) denotes the agent that event vi belongs to.
• For sc ∈ SCstart, sc is satisfied at the start event vi of the

episode. That is, sc(Xi) holds, where Xi ⊆ Xa(vi).
• For sc ∈ SCend, sc is satisfied at the end event vj of the

episode. That is, sc(Xj) holds, where Xj ⊆ Xa(vj).
• For sc ∈ SCoverall, sc is satisfied throughout the episode.

That is, ∀T s.t. vi ≤ T ≤ vj , sc(XT ) holds, where XT ⊆
Xa(vi) ∪Xa(vj).
In this paper, we consider the following forms of contin-

uous state constraints, where A is a constant matrix, B is a
constant vector, and c is a constant:
• AX ∈ L, where L is a convex region approximated by a

set of linear inequalities.
• AX ≤ B, which is a set of linear inequalities.
• dis(A1X,A2X) ≤ c, where A1 and A2 has the same

size, and A1X,A2X usually corresponds to the state vari-
ables belonging to different agents.

While the state constraints may take many forms, the above
are among the ones typically encountered that also guar-
antees convexity of our problem. Additionally, we will use
dis(A1Xs, A2Xt) ≤ c to denote distance constraint when it
is a delta constraint to differentiate it from an overall state
constraint. Note that for distance constraints, since we use a
MILP encoding in this paper, we can use L1 distance instead
of L2 distance, but we can easily extend it to L2 distance by
using MIQCP.

For example, in Figure 1, Xa ∈ L1 for episode epAB is
an overall state constraint that requires AUV1 to stay within
science site L1 throughout the episode. d(Xa

E) ≤ 0 for com-
munication link epEE′ is a state constraint to be satisfied
at the start event. In our example, dis(Xa

E , X
b
E′) ≤ 30 for

epEE′ is a delta constraint that requires the location where
AUV1 initiates the communication and the location where
AUV2 receives the communication need to be within 30
meters from each other. In this case, we assume the delay
is caused by the transmission over media, but the initiation

and reception of message is instantaneous. In other cases, it
may be reasonable to model a communication link with an
overall state constraint dis(Xa, Xb) ≤ 30 that requires the
two vehicles to be within 30 meters of each other throughout
the entire communication process, for example, to transmit
data. State constraints and delta constraints apply to external
requirement episodes too. For example, we may require as
a delta constraint that when AUV1 finishes its scouting mis-
sion, AUV2 should continue scouting from where AUV1 left
off to maintain the consistency of data collected. An exam-
ple of SCoverall may be a tethering constraint, such as when
a remotely operated vehicle (ROV) is deployed underwater
but is tethered to the ship, it has to stay within a certain dis-
tance to the ship throughout the entire mission.

State Temporal Decoupling Problem
Our state temporal decoupling problem for MaQSP is a
natural extension of the temporal decoupling problem for
MaSTNU (Zhang and Williams 2021).
Definition 3 (State Temporal Decoupling). Given a MaQSP,
the set of agents’ local state plans NA forms a state temporal
decoupling of the MaQSP if:
• (feasibility) All local state plans NA = {Na1 , Na2 , . . . ,
Nan} are feasible. That is, there exists a dynamic and
valid execution strategy for each local state plan.

• (validity) Merging any combination of execution strate-
gies for the local state plans NA yields a solution to
the MaQSP, that is, given that the external contingent
episodes CX are satisfied, all the external requirement
episodes EX are also satisfied.
The execution strategy for a local state plan is dynamic as

it may need to react on the fly to real-time observations of
when the uncontrollable events occur. The execution strat-
egy is valid if the resulting execution satisfies all the tem-
poral and state constraints in the state plan. In this paper,
we assume that the evolution of each continuous state vari-
able follows a first-order dynamical model ẋ = v, where
v ≤ vmax with vmax being a fixed maximum change rate.
Definition 4 (Decoupling Problem). The state temporal de-
coupling problem for MaQSP is a tuple 〈M,X0〉, where
M is a MaQSP, and X0 = ∪a∈AX

a
0 specifies the initial

state of the agents at the reference event vZ . The goal is
to find a set of decoupling episodes for each agent EP a

d ,
such that the set of augmented local state plans Na

+∆ =
〈V a, Xa, EP a ∪ EP a

d 〉 for each agent a forms a state tem-
poral decoupling of the MaQSP.

The feasibility condition in Definition 3 requires that the
addition of decoupling episodes does not over-constrain any
local state plan and makes it infeasible. The validity condi-
tion requires that if the local execution strategies satisfy the
decoupling episodes, then the external requirement episodes
must also be satisfied.

Figure 2 shows an example decoupling for our motivat-
ing example, where communication from AUV1 to AUV2
is relayed through the ship and used to support the satisfac-
tion of epHC . The highlighted red arrows represent the de-
coupling episodes. For example, epZF requires that AUV1



Figure 2: Decoupling solution for motivating example

must execute event vF between 81 to 101 minutes after vZ ,
and it must be in region L3 at vF , where L3 is a rectangular
cuboid enclosed by its two corners [〈59, 59, 0〉, 〈76, 76, 0〉].
The execution strategy for the ship is that it should sched-
ule vG as soon as it receives vF ′ until 89 minutes after vZ ,
at which point even if vF ′ is not received, it should sched-
ule vG. A feasible trajectory for each vehicle is shown by
its 〈x, y, d〉 position at each event highlighted in blue. No-
tice that a decoupling solution retains the flexibility for each
agent to execute its own state plan, and it only has to enforce
the necessary constraints to ensure validity.

Decoupling Algorithm
Our state temporal decoupling algorithm for MaQSP builds
on top of the temporal decoupling algorithm for MaSTNU
(Casanova et al. 2016) to handle additional continuous state
constraints, and follows their use of mixed-integer linear
programming (MILP) in order to solve the problem. More
specifically, such an encoding involves encoding both the
validity condition and the feasibility condition in a single
MILP problem, and solving it using off-the-shelf optimiza-
tion solvers. Intuitively, the validity condition specifies a set
of MILP constraints that ensures that the external episodes
across agents are decoupled and can be safely removed from
the MaQSP without affecting the correctness of the execu-
tion result. The feasibility condition specifies a set of MILP
constraints that ensures that the local state plans are feasible
and can be successfully executed.

Our decoupling algorithm extends the original temporal
decoupling algorithm in the following ways: For the validity
condition, we use Casanova’s encoding to decouple all the
external temporal constraints, and add on top of it encoding
to decouple all the external state and delta constraints. For
the feasibility condition, in the case of MaSTNU, since it
only concerns the scheduling problem, its local plan is an in-
stance of simple temporal network with uncertainty (STNU)
(Vidal 1999) without any state constraints. Therefore, the
feasibility of a STNU is simply its dynamic controllability,
which can be encoded as a MILP (Cui and Haslum 2017;
Wah and Xin 2007). With additional continuous state con-
straints, the feasibility of our local state plan becomes a path
planning problem under temporal uncertainty. Therefore, we
extend the MILP encoding to solve for feasibility of QSP
with temporal uncertainty, which is the first to address path
planning under temporal uncertainty as we know of.

Figure 3: (a) Temporal decoupling without communication
(b) Temporal decoupling with communication relay

In the following, we start by describing the temporal va-
lidity encoding (Casanova et al. 2016). We then describe the
encoding for feasibility of QSP, and the state validity en-
coding. The final decoupling algorithm puts everything to-
gether, which consists of the temporal validity encoding, the
state validity encoding, and feasibility constraints for each
agent’s local QSP.

Temporal Validity Encoding
We start by showing two temporal decoupling examples in
Figure 3 to show the intuitive ideas behind the temporal de-
coupling algorithm. In these examples, the goal is to satisfy
the external requirement temporal constraint eAB .

Recall that validity condition requires that by having each
agent execute its own local plan, the external requirement
constraints are guaranteed to be satisfied. In Figure 3(a),
eAB is satisfied by imposing two local temporal constraints,
eZA for AUV1 and eZB for AUV2. Note that since event vZ
is a reference time point shared by all agents, any constraint
connected to it is considered a local constraint. Assuming
these local constraints are satisfied, we have vB − vA =
(vB − vZ)+ (vZ − vA) = [75, 90]+ [−45,−30] = [30, 60],
which satisfies eAB . Intuitively, we have constrained the ex-
ecution time window for the start and end events of eAB

to be relative to a common reference time point. This is the
simplest case of decoupling that requires no communication,
first proposed by Hunsberger (Hunsberger 2002).

In Figure 3(b), we additionally have communication links
eAC and eDE , similar to our motivating example. In this
case, eAB is satisfied by imposing local temporal constraints
eZA for AUV1, eZC and eCD for the ship, and eZE and eEB

for AUV2. Since eAC and eDE are contingent constraints,
we can assume that they are satisfied by nature, and we have
vB−vA = (vB−vE)+(vE−vD)+(vD−vC)+(vC−vA) =
[0, 0]+[0, 5]+[30, 50]+[0, 5] = [30, 60], which also satisfies
eAB . In this case, not only do we need to satisfy the external
requirement constraint eAB , due to the existence of commu-
nication links, the agents receiving the communication need
to have some expectation of when communication will oc-
cur. For example, by constraining eZA, we are guaranteed
that event vC will definitely occur some time in between
vC−vZ = (vC−vA)+(vA−vZ) = [0, 5]+[0, 60] = [0, 65],
which is a contingent temporal constraint, since vC is not
controlled by the ship but can only be observed as it occurs.

With the above intuition, the key idea behind finding these
decoupling constraints is that the imposed local decoupling
constraints need to be tighter or more restrictive than the ex-
ternal requirement temporal constraints to make them redun-



dant, and they should also ensure that the uncontrollable end
event of each communication link has a corresponding lo-
cal contingent constraint that covers all of its possible range
of time occurrence. Note that the problem of finding valid
temporal decoupling constraints is combinatorial, and hence
it is encoded as a MILP summarized below. Readers should
refer to (Casanova et al. 2016; Zhang and Williams 2021)
for more detail.

Given MaSTNU 〈NA, EX , CX , vZ〉, the MILP formula-
tion includes the following variables, where V = ∪a∈AV

a:

(1) Real variables uij for vi, vj ∈ V , with uii = 0.
(2) Boolean variables ckj for (vi, vj , vk) ∈ T , where T =

{(vi, vj , vk)|eij ∈ CX , vk ∈ V a(vj)\{vj}}.
(3) Boolean variables bij for (vi, vj) ∈ EX , where EX =
{(vi, vj)|a(vi) 6= a(vj), eij /∈ CX , eji /∈ CX}.

(4) Boolean variables zijkl for (vi, vj , vk, vl) ∈ Q, where
Q = {(vi, vj , vk, vl)|(vi, vj) ∈ EX , (vk = vl = vZ)∨(
(a(vk) = a(vi)) ∧ (ekl ∈ CX ∨ elk ∈ CX)

)
}.

(5) Integer variables hij ∈ [0, H] for each tuple (vi, vj) ∈
EX , where H = max(|A| − 2, |CX |).

The constraints include the following, where lij = −uji:

(1) ∀vi, vj ∈ V, uij + uji ≥ 0

(2) ∀eij ∈ EX , (lij ≥ Lij) ∧ (uij ≤ Uij)

(3) ∀eij ∈ CX , (0 ≤ lij ≤ Lij) ∧ (uij ≥ Uij)

(4) ∀eij ∈ EX , (bij = 1) ∧ (bji = 1)

(5) ∀(vi, vj) ∈ EX , bij =
∑

vk,vl|(vi,vj ,vk,vl)∈Q zijkl

(6) ∀(vi, vj , vk, vl) ∈ Q, uij ≥ uik + ukl + ulj + (zijkl −
1)M, where M is a large constant

(7) ∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , zijkl ≤ blj

(8) ∀(vi, vj , vk, vl) ∈ Q s.t. (vl, vj) ∈ EX , hij + (1 −
zijkl)(H + 1) ≥ hlj + 1

(9) ∀eij ∈ CX ,
∑

vk|(vi,vj ,vk)∈T ckj = 1

(10) ∀(vi, vj , vk) ∈ T, (ukj ≥ uki + uij + (ckj − 1)M) ∧
(0 ≤ lkj ≤ lki + lij + (1− ckj)M)

(11) ∀(vi, vj , vk) ∈ T s.t. (vi, vk) ∈ EX , ckj ≤ bik and
∀(vi, vj , vk) ∈ T s.t. (vk, vi) ∈ EX , ckj ≤ bki

For our state temporal decoupling algorithm, we make an
adaptation to the above encoding since we do not require all
the communication links to be used. For example, in Figure
1, even though there is a communication link epEE′ from
AUV1 to AUV2, it may not be used to support the decou-
pling of any external requirement episodes, in which case
we do not need to satisfy any of its state constraints. There-
fore, we additionally add a boolean variables pj for each
epij ∈ CX , which denotes whether the communication link
is used or not. We add the following constraints:
• ∀(vi, vj , vk, vl) ∈ Q s.t. ekl ∈ CX , pl ≥ zijkl and
∀(vi, vj , vk, vl) ∈ Q s.t. elk ∈ CX , pk ≥ zijkl. This says
that the communication link must be decoupled if it is
used to support an external requirement constraint.

Figure 4: Feasibility for QSP with temporal certainty

• ∀(vi, vj , vk) ∈ T s.t. elk ∈ CX , pk ≥ ckj . This says that
the communication link must be decoupled if it is used to
support an external contingent constraint.

Additionally, if the end event of a communication link epij
has other constraints connected to it, then we need to set
pj = 1 as well. The constraint (9) in Casanova’s encoding
should be changed to ∀eij ∈ CX ,

∑
vk|(vi,vj ,vk)∈T ckj = pj

so that only the used communication links are decoupled.

Feasibility Encoding for QSP
While the validity encoding ensure that the external episodes
are decoupled, the imposed decoupling episodes may over-
constrain the local state plans. For MaSTNU, Casanova et
al. use the MILP dynamic controllability encoding proposed
by Cui et al. to ensure the feasibility of local STNUs (Cui
and Haslum 2017). We describe a novel feasibility checking
algorithm for QSPs that builds on top of Cui’s MILP encod-
ing. While previous path planning algorithms exist for QSPs
(Fernández-González, Williams, and Karpas 2018; Reeves,
Fernández-González, and Williams 2019; Chen, Williams,
and Fan 2021), they often assume a given total ordering of
the events and that all the events are executable without any
temporal uncertainty. As a result, their solution is typically
a deterministic trajectory with a list of waypoints at fixed
times. As mentioned, due to the existence of uncontrollable
events, our execution strategy for a QSP is a dynamic policy.

To illustrate the high-level idea for finding an execution
strategy for QSP, consider a simple QSP in Figure 4(a). First,
we convert the QSP into its normal form, where every con-
tingent temporal constraint has a lower bound of 0 (Mor-
ris 2006), and no contingent temporal constraint starts from
an uncontrollable event, as shown in Figure 4(b). This can
be achieved by rewriting each contingent episode into a re-
quirement episode with a fixed duration equal to the original
lower bound, followed by a contingent episode with a lower
bound of 0. Second, we enforce a total ordering of the events
at which state variables are constrained, as shown in Figure
4(c). Notice that we only need to order the events that have
state constraints, since for any event without any state con-
straints, we do not care what values the state variables take
at those events. Finally, given the ordering, we can express
the reachability constraint by specifying how long it takes at
least for the agent to go from one location to the next as the
lower bound between those two events, as in Figure 4(d).



Figure 5: (a) Example QSP with 5 state constraints (b) Ef-
fective state constraints for example QSP

We then check the feasibility of QSP by checking its dy-
namic controllability. We now describe the MILP encoding
in detail in the order of state constraints, ordering and reach-
ability constraints, and dynamic controllability constraints.

(1) Encoding State and Delta Constraints First, we en-
code all the continuous state and delta constraints, which in-
cludes: SCstart, SCend, SCoverall, DC. We denote the set
of constrained events as Vsc = {v|v = s(ep(c)),∀c ∈
SCstart ∪ SCoverall ∪DC or v = t(ep(c)),∀c ∈ SCend ∪
SCoverall ∪DC}, where ep(c) denotes the episode that the
constraint c belongs to, and s(ep), t(ep) denote the start and
end event of the episode ep, respectively. For each state vari-
able x ∈ X and for each constrained event vi ∈ Vsc, we
create a continuous variable xi that represents the value of
the state variable at that event. We denote Xi as the vector
of continuous variables for state variables X at event vi.

To encode the satisfaction of state constraints, consider
the example in Figure 5(a) with five state constraints. In this
case, since both X ∈ L2 and X ∈ L4 are overall state con-
straints to be satisfied throughout the episodes, their start and
end events need to satisfy those state constraints too. Ad-
ditionally, since epAB includes a contingent temporal con-
straint with a lower bound of 0, meaning that event vB is
an uncontrollable event that may occur any time on or after
event vA, any state constraint that needs to be satisfied at vB
must also be satisfied at vA as well as throughout episode
epAB . Therefore, the effective state constraints that need to
be satisfied and encoded for Vsc are shown in Figure 5(b).
Note that since we assume normal form of the QSP, event
vA cannot be another uncontrollable event and the propa-
gation of state constraints due to contingent constraints is
limited. Additionally, for any overall state constraint sc of
an episode, any constrained event ordered in between the
episode must also satisfy the constraint. Based on the MILP
dynamic controllability encoding, lij denotes the continuous
variable for the lower bound between event vi and vj . There-
fore, we enforce the overall state constraint sc ∈ SCoverall

for an episode epAB using the following constraint:
(C1) ∀vD ∈ Vsc, (lDA ≥ 0) ∨ (lBD ≥ 0) ∨ sc(XD).

Intuitively, this says that either vD is ordered before vA, or
vD is ordered after vB , or the state constraint has to be satis-
fied at event vD. Note that in the case of vD being an uncon-
trollable event with contingent episode epGD, as mentioned,
any state constraint that applies to vD should apply as an
overall state constraint for the entire episode epGD. If vG is
ordered before vA, based on our reachability analysis in the
following section, XA = XG must hold to satisfy dynamic
controllability, and any event vE ordered in between epGD

Figure 6: Examples for ordering and reachability constraints

also satisfies XG = XE , which automatically satisfies the
overall state constraint.

(2) Encoding Ordering & Reachability In order to en-
force a total ordering between constrained events and reach-
ability between pairs of events, we can combine them into
the following constraints. Note that we assume agents have
first-order dynamics, and our total ordering is a weak total
ordering that allows events to occur simultaneously.

(C2) ∀vA, vB ∈ Vsc such that vA, vB are executable,
∀x ∈ X, (lAB ≥ |xA − xB |/vmax) ∨ (lBA ≥
|xA − xB |/vmax)

(C3) ∀vA, vB ∈ Vsc such that vA or vB is uncontrollable,
(lAB ≥ 0) ∨ (lBA ≥ 0)

(C4) ∀vA, vB ∈ Vsc such that vA is uncontrollable and
vB is executable, ∀x ∈ X, (lBA ≥ 0) ∨ (lAB ≥
|xA − xB |/vmax)

For C2 (Figure 6(a)), when vA and vB are both exe-
cutable events with state variable values XA and XB , then
assuming first-order dynamics, we know it takes at least
maxx∈X |xA − xB |/vmax time to go from one event to an-
other. Therefore, we order them by imposing that the tempo-
ral lower bound either from vA to vB or from vB to vA has to
be greater or equal to the above. For C3 (Figure 6(b)), when
any of vA or vB is an uncontrollable event, then this con-
straint only enforces the ordering between the two events.
C2 and C3 together enforces a global total ordering of all the
constrained events. Note that any contingent episode such as
epCA must satisfy lbCA ≥ 0 by definition, which satisfies
C3. For C4 (Figure 6(b)), when event vB is an executable
event ordered after an uncontrollable event vA, then there is
a reachability constraint from vA to vB .

An example of enforced reachability constraints assum-
ing given order can be seen in Figure 4(d). Note that we
omitted the reachability constraint from vZ to vB to avoid
cluttering, since it is dominated by other reachability con-
straints. Notice that without a reachaility constraint from vC
to vA, XA can take any value within the range of its state
constraints, and we do not strictly require the agent to be
at XA at event vA. To understand the execution strategy,
we will focus on a minimal QSP in Figure 6(b) involving
a contingent episode epCA and the first executable event vB
ordered after vA, since the execution strategy for any con-
secutive executable events is simple. In order to describe
the execution strategy, we will write the QSP’s underlying
temporal network in its labeled distance graph form (Morris
2006) in Figure 7, where lij (uij) denotes the lower bound
(upper bound) from vi to vj . According to C2 and C4, we
have reachability constraints lCB ≥ |XC −XB |/vmax and
lAB ≥ |XA−XB |/vmax. Assuming that XA is constrained



Figure 7: Execution policy in labeled distance graph

to be in region L2, then it means that XC must be within
region L2 too. The execution policy involves the agent start-
ing at location XC at event vC , and going towards XB . If
the agent reaches the boundary for region L2, but hasn’t re-
ceived event vA, then it will be stuck at the boundary until
vA occurs. When vA occurs, the agent continues going to-
wards XB . The execution policy is feasible if the resulting
network is dynamically controllable, because based on the
dynamic controllability constraints:

• uCB − lCB ≥ 0. This ensures that there is enough time
on uCB for the agent to go from XC to XB non-stop.

• uCB−lAB−d ≥ 0. If the agent gets stuck at L2 boundary,
then in the worst case, it needs to wait until d time has
passed before continuing its way to XB . This ensures that
we can find such a location XA within the L2 boundary
such that there is enough time on uCB for the agent to
wait for d time and go from XA to XB .

• uAB − lAB ≥ 0. This ensures that if the agent is stuck
at L2 boundary until vA occurs, there is enough time on
uAB for it to go from the boundary point XA to XB .

• uAB + 0− lCB ≥ 0. This ensures that if event vA occurs
immediately after event vC , there is enough time on uAB

for the agent to go from XC to XB .

Note that it is possible for other events to be ordered in
between vC and vA. If an executable event vD is ordered
in between vC and vA, then reachability and dynamic con-
trollability constraints require that XC = XD. If an uncon-
trollable event vE is ordered in between vC and vA, and its
corresponding contingent episode is epGE , then it requires
that XC = XG and vC = vE , that is, event vC is scheduled
immediately when vE is received. We leave it to the reader
to validate the feasibility of execution policies in these cases.

(3) Encoding Dynamic Controllability We summarize
the MILP constraints that ensure the dynamic controllabil-
ity of the local plans (Cui and Haslum 2017; Wah and Xin
2007). Given a STNU 〈V,E,C〉, where V is the set of
events, E is the set of temporal requirement constraints, and
C is the set of temporal contingent constraints, the MILP
formulation includes the following variables, where VE de-
notes the set of executable events. Note that lij = −uji.

(1) Real variables uij for vi, vj ∈ V , with uii = 0

(2) Real variables wijk for eik ∈ C, vj ∈ VE , with wiik = 0

The MILP constraints are listed below:

(1) ∀eij ∈ E ∪ C, (lij ≥ Lij) ∧ (uij ≤ Uij)

(2) ∀eij ∈ C, (0 ≤ lij ≤ Lij) ∧ (uij ≥ Uij)

(3) ∀vi, vj , vk ∈ V, uij ≤ uik + ukj

Figure 8: Decouple delta constraint for (a) external require-
ment episode (b) external contingent episode

(4) ∀eik ∈ C,∀vj ∈ VE , (ljk < 0) ∨
(
(uij ≤ lik − ljk) ∧

(lij ≥ uik − ujk)
)

(5) ∀eik ∈ C,∀vj ∈ VE , uik − ujk ≤ wijk

(6) ∀eik ∈ C,∀vj ∈ VE , min(lik, wijk) ≤ lij

(7) ∀eik ∈ C,∀vj , vm ∈ VE , wijk − umj ≤ wimk

(8) ∀eik, emj ∈ C, (wijk < 0) ∨ (wijk − lmj ≤ wimk)

When the external contingent episodes are decoupled, ad-
ditional local contingent episodes may be introduced as part
of the decoupling episodes. Therefore, the above encoding
needs to be adapted to handle these optional local contin-
gent constraints. Refer to (Casanova et al. 2016) for detail.

State Validity Encoding
To ensure the validity of decoupling, the external state and
delta constraints across agents should be decoupled too. We
describe how to decouple DC and SCoverall next. For sim-
plicity, we assume that the events of an external episode
epAB are executable events, except for the uncontrollable
end event when epAB is an external contingent episode. This
assumption can be removed with some more analysis. When
encoding state validity constraints, for a communication link
epij , we condition its MILP constraints on pj = 1 so that
they are only enforced when epij is used.

First, as shown in Figure 8, consider an external episode
epAB with a delta constraint dc(Xa

A, X
b
B) ∈ DC. To find

the state decoupling for dc(Xa
A, X

b
B), it suffices to find L1,

L2 such that for any Xa
A ∈ L1 and for any Xb

B ∈ L2,
dc(Xa

A, X
b
B) always holds. In this way, we have decoupled

the external delta constraint by restricting locally for each
agent an area that it should be in at the specific start and
end event of the episode. Note that if epAB is a contingent
episode (Figure 8(b)), then its decoupling involves an intro-
duced local contingent episode epZB in its normal form, or
more specially, a requirement episode epZB′ and a contin-
gent episode epB′B . Because vB is an uncontrollable event,
Xb ∈ L2 has to be satisfied over the entire epB′B .

To encode the above constraint in MILP, while it is pos-
sible to directly find such regions L1, L2 approximated by a
set of points as a polygon, in this paper, we directly enforce
the constraint dc(Xa

A, X
b
B). If epAB is a contingent episode,

we additionally enforce dc(Xa
A, X

b
B′). Once a MILP solu-

tion is found, we can read off region L1 as the point Xa
A,

and region L2 as the point Xb
B or the region enclosed by

Xb
B and Xb

B′ in the case of a contingent episode. As a post-
processing step, we can optionally relax the region L1 and



L2 such that the decoupling is still valid to provide more
flexibility to the agents.

Second, as shown in Figure 9(a), consider an external
requirement episode epAB with an overall state constraint
sc(Xa, Xb) ∈ SCoverall. In this case, the resulting decou-
pling introduces copies of event vA and event vB and exter-
nal temporal constraints eAA′ and eB′B with duration 0. The
decoupling of eAA′ and eB′B can be handled by the tempo-
ral validity encoding. We can similarly find regions L1 and
L2 such that ∀vA ≤ T1 ≤ vB′ , Xa

T1
∈ L1 for agent a and

∀vA′ ≤ T2 ≤ vB , X
b
T2
∈ L2 for agent b, sc(Xa

T1
, Xb

T2
). In

order to encode the above constraints in MILP, we enforce
the constraints sc(Xa

A, X
b
A′), sc(Xa

A, X
b
B), sc(X

a
B′ , Xb

A′)
and sc(Xa

B′ , Xb
B). Additionally, for any constrained events

in between the two episodes, we enforce the overall state
constraint: ∀vaD ∈ V a

sc,∀vbE ∈ V b
sc, (lDA ≥ 0) ∨ (lB′D ≥

0) ∨ (lEA′ ≥ 0) ∨ (lBE ≥ 0) ∨ sc(Xa
D, Xb

E). Finally, we
can read off region L1 as the convex region enclosed by the
state variable values in between vA and vB′ , and similarly
for L2. L1, L2 can also be relaxed in post-processing.

Finally, as shown in Figure 9(b), consider an external
contingent episode epAB with an overall state constraint
sc(Xa, Xb) ∈ SCoverall. The resulting decoupling involves
a local requirement temporal constraint eZA and a local con-
tingent episode epAC for agent a, where epAC has an overall
state constraint Xa ∈ L1 that requires agent a to stay in re-
gion L1 throughout the communication period. Note that we
assume in this case, agent a receives event vC upon commu-
nication epAB finishes, since it is often used to model data
transmission that takes up a period of time. The decoupling
also involves a local requirement temporal constraint eZA′ , a
requirement episode epA′B′ and a contingent episode epB′B

for agent b, where epA′B′ and epB′B are under the over-
all state constraint Xb ∈ L2. We encode the constraints in
MILP in a similar fashion as before.

Preliminary Experiments
We evaluate our algorithm on two AUV team scenarios. All
experiments were run on on 3.40GHZ 8-Core Intel Core i7-
6700 CPU with 39GB RAM, and the MILP encoding was
solved using Gurobi 9.1.2, with a timeout of 100 seconds.
Note that the MILP encoding also allows the specification of
an objective function, which affects the runtime. We evaluate
the algorithm on three objective cases: (obj1) no objective
function, (obj2) minimize the use of communication links,
(obj3) minimize

∑
vi∈V uZi.

For our motivating example, we record the average run-
time for 3 communication scenarios: (ST1) only epEE′ is
available, which the algorithm finds no decoupling solution,
(ST2) epFF ′ and epGG′ are available, and (ST3) all com-
munication links are available. We also test the example for
temporal decoupling only by framing it as a MaSTNU (T3),
and for feasibility only by framing it as a QSP (QSP) that
assumes full observability between agents. We repeat the ex-
periments by adding two other missions to each AUV (tests
denoted by *). The result is shown in Table 1. The results
show that the choice of objective functions can have a large
impact on the runtime. Additionally, the runtime increases

test obj1 obj2 obj3 test obj1 obj2 obj3
ST1 0.24 0.21 0.17 ST1* 2.87 3.33 5.28
ST2 0.4 0.3 0.71 ST2* 4.46 3.15 43.14(1)
ST3 4.23 2.56 24.9 ST3* 18.6(1) 47.39(4) N/A(10)
T3 0.09 0.06 0.94 T3* 0.19 0.19 2.31

QSP 0.04 N/A 0.04 QSP* 6.84 N/A 23.6

Table 1: Average runtime in seconds over 10 runs for differ-
ent tests, with the number of timed out runs in parenthesis

Figure 9: Decouple state constraint of type SCoverall for (a)
external requirement episode (b) external contingent episode

quite drastically as the number of communication links in-
creases. Note that for temporal decoupling, there exists a so-
lution even with only epEE′ , and the added missions are not
totally ordered since no state constraints are enforced.

In a second scenario, the ship deploys an AUV in a region,
and the AUV carries out two sampling missions at different
science sites. When both missions are done, the AUV trans-
mits data through a communication link back to the ship.
The transmission may take any time between 20 to 30 min-
utes, during which they have to stay within 30 meters of each
other. The AUV and the ship needs to stay within 100 meters
of each other throughout the two sampling missions, and the
ship has its own imaging mission to do before a certain dead-
line such that it has to be carried out concurrently while the
AUV is on its sampling missions. Finding a solution takes
1.1 secs on average with obj1 and 1.6 secs with obj3.

Note that our QSP feasibility encoding finds an execution
strategy that fixes the state variable values at constrained ex-
ecutable events, meaning for an executable event vi ∈ Vsc

following an uncontrollable event vj ∈ Vsc with [0, 0] tem-
poral bound, we exclude any execution strategies where state
variables at vi can take any non-deterministic value that is
taken at vj . Future work can investigate if this assumption
can be relaxed. we also assume no obstacles in the environ-
ment and simple dynamics of the vehicles. Future work can
build on top of our encoding to allow richer path planning
constraints and agent dynamics.

Conclusion
In this paper, we introduced the framework of Multi-Agent
Qualitative State Plan (MaQSP) to model multi-agent plans
with coupled temporal and state constraints, where agents
are subject to limited communication during execution. We
proposed a state temporal decoupling algorithm for MaQSP
based on MILP encoding, which includes a novel path plan-
ning algorithm for QSPs with temporal uncertainty that may
be useful in other applications.
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Fernández-González, E.; Williams, B.; and Karpas, E. 2018.
ScottyActivity: Mixed Discrete-Continuous Planning with
Convex Optimization. J. Artif. Intell. Res. 62: 579–664.
Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In AAAI/IAAI.
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