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ABSTRACT
With the rising demand for deploying robot teams in autonomous
warehouses and factories, the Multi-Agent Path Finding (MAPF)
problem has drawn more and more attention. The classical MAPF
problem and most of its variants focus on navigating agent teams
to goal locations while avoiding collisions. However, they do not
take into account any precedence constraints that agents should re-
spect when reaching their goal locations. Planning with precedence
constraints is important for real-world multi-agent systems. For ex-
ample, a mobile robot can only pick up a package at a station after
it has been delivered by another robot. In this paper, we study the
Multi-Agent Path Finding with Precedence Constraints (MAPF-PC)
problem, in which agents need to visit sequences of goal locations
while satisfying precedence constraints between the goal locations.
We propose two algorithms for solving this problem systematically:
Conflict-Based Search with Precedence Constraints (CBS-PC) is
complete and optimal, and Priority-Based Search with Precedence
Constraints (PBS-PC) is incomplete but more efficient in finding
near-optimal solutions in practice. Our experimental results show
that CBS-PC scales to dozens of agents and hundreds of goal loca-
tions and precedence constraints, and PBS-PC scales to hundreds
of agents, around one thousand goal locations, and hundreds of
precedence constraints.
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1 INTRODUCTION
In intelligent warehouse and factory systems, large teams of robots
are expected to complete constantly dispatched tasks effectively. One
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typical example is the Kiva (now: Amazon Robotics) warehouse sys-
tem, in which hundreds of Kiva robots are coordinated to transport
movable shelving units on the fly without human intervention [17].
The Multi-Agent Path Finding (MAPF) problem is the problem of
navigating a team of agents from their start locations to their goal
locations while avoiding collisions. Due to the rising demand for
developing such multi-robot systems, MAPF has drawn more and
more attention, and MAPF algorithms are regarded as fundamental
techniques for coordinating the motions of robot teams.

Although classical MAPF algorithms can find effective plans for
navigating mobile robots in autonomous warehouses, they only plan
for agents to reach single goal locations. In real-world systems, we
often need to coordinate robots that fulfill streams of tasks with
precedence constraints over relatively long time horizons. For ex-
ample, a mobile robot needs to move to several stations to deliver
different packages, and another mobile robot can only pick up a
package after it has been delivered to the corresponding station.

However, existing MAPF algorithms do not consider precedence
constraints between goals when planning the path to reach a se-
quence of goal locations for each agent [5]. This motivates us to
study the Multi-Agent Path Finding with Precedence Constraints
(MAPF-PC) problem, in which agents need to complete sequences
of goals (by reaching the goal locations) while satisfying precedence
constraints between the goals. We present two algorithms for solv-
ing MAPF-PC: Conflict-Based Search with Precedence Constraints
(CBS-PC) and Priority-Based Search with Precedence Constraints
(PBS-PC), which generalize the state-of-the-art MAPF algorithms
CBS [14] and PBS [10], respectively. We also propose several im-
provements to CBS-PC. Like CBS and PBS, CBS-PC is complete
and optimal, and PBS-PC is incomplete but more efficient in obtain-
ing near-optimal plans in practice.

We benchmarked CBS-PC and PBS-PC on MAPF-PC instances
with different numbers of agents, goals, and precedence constraints.
The results show that the most advanced CBS-PC variant scales to
dozens of agents and hundreds of goal locations and precedence
constraints, and PBS-PC scales to hundreds of agents, around one
thousand goal locations, and hundreds of precedence constraints.

2 PRELIMINARIES
In this section, we introduce MAPF, CBS, prioritized planning, and
PBS to provide the necessary background for the MAPF-PC problem
and our MAPF-PC algorithms.



2.1 MAPF
The MAPF problem is defined by an undirected graph 𝐺 = (𝑉 , 𝐸)
and a set of𝑚 agents {𝑎1 . . . 𝑎𝑚}. Each agent 𝑎𝑖 has a start vertex 𝑠𝑖 ∈
𝑉 and a goal vertex 𝑔𝑖 ∈ 𝑉 . In each timestep, an agent either moves
to a neighboring vertex, waits at its current vertex, or terminates
at its goal vertex (that is, does not move anymore). Both move
and wait actions have unit cost, and terminate actions have zero
cost. A path of an agent is a sequence of actions that leads it from
its start vertex to its goal vertex and ends with a terminate action.
The path cost of a path is the accumulated cost of all actions in
this path. A vertex conflict happens when two agents stay at the
same vertex simultaneously, and an edge conflict happens when two
agents traverse the same edge in opposite directions simultaneously.
A solution is a set of conflict-free paths of all agents. A solution is an
optimal solution iff there is no other solution with a smaller objective
value. Two common objectives for MAPF are the Sum of path Costs
(SoC) and the makespan. The SoC is the sum of the path costs of
the paths of all agents, and the makespan is the maximum path cost
of the paths of all agents. Solving MAPF optimally is NP-hard for
either objective [12, 18].

2.2 CBS
CBS [14] is a complete and optimal two-level MAPF algorithm. On
the high level, CBS performs a best-first search on a Constraint Tree
(CT). Each CT node contains (1) a set of constraints1 and (2) a set
of paths, one for each agent, that satisfy all these constraints. The
cost of a CT node is the SoC or makespan of all its paths, depending
on the objective of the MAPF problem. CBS starts with the root
CT node, which has an empty set of constraints and a path for each
agent that has the minimum path cost when ignoring conflicts. When
expanding a CT node, CBS returns the paths of it as a solution if the
paths are conflict-free. Otherwise, CBS picks a conflict to resolve,
splits the CT node into two child CT nodes, and adds a constraint
to each child CT node to prohibit either one or the other of the two
conflicting agents from using the conflicting vertex or edge at the
conflicting timestep. CBS then calls its low level to replan the path
of the newly constrained agent in each child CT node. On the low
level, for a given CT node and a given agent, CBS finds a path for the
agent that has the minimum path cost while satisfying all constraints
of the CT node but ignoring conflicts.

2.3 Prioritized Planning and PBS
Prioritized planning is a simple-yet-effective MAPF algorithm that
plans the agents according to a predefined total priority ordering.
A priority ordering ≺≺≺ is a strict partial order on {𝑎1 . . . 𝑎𝑚} where
𝑎𝑖 ≺ 𝑎 𝑗 indicates that agent 𝑎𝑖 is of higher priority than agent 𝑎 𝑗 .
A total priority ordering ≺≺≺ satisfies that, for any two agents 𝑎𝑖 and
𝑎 𝑗 , we have either 𝑎𝑖 ≺ 𝑎 𝑗 or 𝑎 𝑗 ≺ 𝑎𝑖 . Prioritized planning plans
for agents in the order from highest priority to lowest priority. For
each agent, it finds a path that has the minimum path cost among
all paths that avoid conflicts with the paths of all higher-priority
agents. Whether prioritized planning finds a solution often depends

1The constraints in a CT are added by CBS to solve the MAPF instance. They are
different from precedence constraints, which characterize a MAPF-PC instance and are
thus part of the input.

on the predefined priority ordering, and it is not always easy to find
a priority ordering that works.

PBS [10] is a two-level MAPF algorithm which systematically
searches for such a priority ordering. On the high level, it performs a
depth-first search on a Priority Tree (PT). Each PT node 𝑁 contains
(1) a priority ordering ≺≺≺𝑁 and (2) a set of paths, one for each agent,
that respects its priority ordering, i.e., the paths of any two agents 𝑎𝑖
and 𝑎 𝑗 with 𝑎𝑖 ≺𝑁 𝑎 𝑗 are conflict-free. PBS starts with the root PT
node, which has an empty priority ordering (that is, no agent is of
higher priority than another) and thus a path for each agent that has
the minimum path cost when ignoring conflicts. When expanding a
PT node, PBS picks a pair of conflicting agents 𝑎𝑖 and 𝑎 𝑗 and splits
the PT node into two child PT nodes, each extending the priority
ordering of its parent PT node with either 𝑎𝑖 ≺ 𝑎 𝑗 or 𝑎 𝑗 ≺ 𝑎𝑖 . PBS
then calls its low level to replan the paths of the child nodes so that
their paths respect their priority orderings. On the low level, for each
PT node, PBS plans paths for agents in an order that is topologically
sorted according to its priority ordering. Like prioritized planning,
PBS plans a path for each agent that has the minimum path cost
while avoiding conflicts with the paths of higher-priority agents. A
PT node is pruned if PBS cannot find such a path for any agent. PBS
returns the paths of a generated PT node as a solution if the paths are
conflict-free. PBS is neither optimal nor complete, but existing work
shows that it finds solutions that are close to optimal and scales well
to large numbers of agents [9, 10].

3 PROBLEM DEFINITION
The MAPF-PC problem is defined by an undirected graph 𝐺 =

(𝑉 , 𝐸), a set of 𝑚 agents {𝑎1 . . . 𝑎𝑚}, and a set of precedence con-
straints T . Each agent 𝑎𝑖 has a start vertex 𝑠𝑖 ∈ 𝑉 and a sequence
of 𝑙𝑖 goals [𝑔1

𝑖
, 𝑔2

𝑖
. . . 𝑔

𝑙𝑖
𝑖
]. Each goal 𝑔 𝑗

𝑖
corresponds to a goal vertex

𝑔
𝑗
𝑖
.𝑙𝑜𝑐 ∈ 𝑉 . When agent 𝑎𝑖 is at 𝑔 𝑗

𝑖
.𝑙𝑜𝑐, it can (but is not required to)

choose to complete goal 𝑔 𝑗
𝑖
. Complete actions take zero timesteps

and have zero cost. We use 𝜏 (𝑔 𝑗
𝑖
) to denote the completion timestep

of 𝑔 𝑗
𝑖
. Each precedence constraint ⟨𝑔 𝑗

𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T is a tuple of two

goals 𝑔 𝑗
𝑖

and 𝑔 𝑗
′

𝑖′ and means that 𝑔 𝑗
𝑖

must be completed before 𝑔 𝑗
′

𝑖′ . An
agent must complete its goals in the order of the goal sequence and
terminates when it completes its last goal. The completion timesteps
of all goals must satisfy the precedence constraints as well. Be-
sides vertex and edge conflicts, we consider a new type of conflicts
called precedence conflicts. A precedence conflict happens when
there exists a pair of goals 𝑔 𝑗

𝑖
and 𝑔

𝑗 ′

𝑖′ such that 𝜏 (𝑔 𝑗
𝑖
) ≥ 𝜏 (𝑔 𝑗

′

𝑖′ ) and

⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T . In MAPF-PC, a path for an agent also needs to specify
the completion timestep of each goal of the agent. A path segment
for goal 𝑔 𝑗

𝑖
is a sequence of actions from the completion of 𝑔 𝑗−1

𝑖
(or

from timestep 0 if 𝑗 = 1) to the completion of 𝑔 𝑗
𝑖
. A solution to a

MAPF-PC instance is a set of conflict-free paths for all agents.
The MAPF problem is a sub-class of the MAPF-PC problem

where each agent has only one goal and T = ∅. Therefore, solving
MAPF-PC optimally is also NP-hard.



4 CBS WITH PRECEDENCE CONSTRAINTS
We introduce CBS-PC, a complete and optimal algorithm that solves
the MAPF-PC problem. In this paper, we are interested in mini-
mizing the SoC. However, CBS-PC can be made to work for other
objectives such as minimizing the makespan or the sum of goal
completion timesteps by making small modifications to its low level.

4.1 High Level of CBS-PC
On the high level, CBS-PC resolves vertex and edge conflicts in the
same way as CBS. When CBS-PC picks a precedence conflict be-
tween goals 𝑔 𝑗

𝑖
an 𝑔 𝑗

′

𝑖′ that violates the precedence constraint ⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩
(in other words, 𝑔 𝑗

𝑖
needs to be completed before 𝑔 𝑗

′

𝑖′ , but this is not

satisfied by the paths of the CT node). We use 𝑡 to denote 𝜏 (𝑔 𝑗
𝑖
)

as specified by the path of agent 𝑎𝑖 . CBS-PC splits the CT node
into two child CT nodes and resolves the precedence constraint by
adding one of the following completion timestep constraints to one
child CT node and the other one to the other child CT node:

(1) 𝜏 (𝑔 𝑗
′

𝑖′ ) > 𝑡 : agent 𝑎𝑖′ must complete 𝑔
𝑗 ′

𝑖′ after timestep 𝑡 . In

the child CT node, the path of 𝑎𝑖′ is replanned, and 𝑔 𝑗
′

𝑖′ is thus

completed after 𝑔 𝑗
𝑖
.

(2) 𝜏 (𝑔 𝑗
′

𝑖′ ) ≤ 𝑡 : agent 𝑎𝑖′ must complete 𝑔 𝑗
′

𝑖′ no later than timestep
𝑡 , which is already satisfied by the path of 𝑎𝑖′ . However, due
to precedence constraint ⟨𝑔 𝑗

𝑖
, 𝑔 𝑗

′

𝑖′ ⟩, we have 𝜏 (𝑔 𝑗
𝑖
) ≤ 𝑡 − 1,

which is not satisfied by the path of 𝑎𝑖 . In the child CT node,
both constraints 𝜏 (𝑔 𝑗

′

𝑖′ ) ≤ 𝑡 and 𝜏 (𝑔 𝑗
𝑖
) ≤ 𝑡 − 1 are added, and

the path of 𝑎𝑖 is replanned.

When generating a child CT node with the completion timestep
constraint in (1), the precedence conflict is immediately resolved
since 𝑎𝑖′ is forced to complete 𝑔

𝑗 ′

𝑖′ after 𝑎𝑖 completes 𝑔
𝑗
𝑖
. When

generating a child CT node with the completion timestep constraints
in (2), CBS-PC tries to find a path for 𝑎𝑖 that completes 𝑔 𝑗

𝑖
earlier

than 𝑡 , which is the timestep when 𝑔
𝑗
𝑖

is completed in the parent CT
node. Such a path usually does not exist as 𝑡 is often the smallest
possible timestep when 𝑎𝑖 can complete 𝑔 𝑗

𝑖
, in which case CBS-PC

prunes the child CT node. However, if such a path does exist, it is
possible that the new path of agent 𝑎𝑖 completes 𝑔 𝑗

𝑖
still no earlier

than 𝜏 (𝑔 𝑗
′

𝑖′ ), in which case the two agents still have the precedence

conflict. Nevertheless, 𝜏 (𝑔 𝑗
𝑖
) is guaranteed to decrease by at least one

timestep. So, if CBS-PC continues to try to resolve the precedence
conflict between the two agents, it will eventually either prune the
branch that involves the repeatedly occurring precedence conflict or
generate a child CT node where it is resolved.

One open question is which conflict to choose if the CT node to
be expanded contains multiple conflicts. Existing work shows that
choosing conflicts that increase the path cost in the child CT nodes
can improve the efficiency of CBS [1]. CBS-PC follows this principle
and prefers precedence conflicts over vertex or edge conflicts (and
breaks ties randomly) because the completion timestep constraint
(1) often increases the path cost. We have also tried the conflict
prioritization method in [1], but, unfortunately, this method turned
out to be too computationally expensive for MAPF-PC instances
since it needs to find all paths with the minimum path costs (known

s1 s1g11 s1g21
8 7,8 5,66,7

5

5

1 2 3 4 5 6 7 8 9

A

B

C

Figure 1: An example of low-level planning in CBS-PC. Agent
𝑎1 has two goals 𝑔11 and 𝑔21. Crosses represent vertex constraints
on 𝑎1, and the numbers below them are the timesteps that 𝑎1 is
not allowed to stay at the vertices. For example, 𝑎1 is not allowed
to stay at 𝐶5 at timesteps 5 and 6.

as MDD [15]) that complete all goals of each agent involved in each
conflict.

4.2 Low Level of CBS-PC
On the low level, we need to plan a path for an agent that (1) com-
pletes all its goals, (2) satisfies the constraints imposed by the high
level, and (3) minimizes the path cost. One might consider planning
the path segment for each goal sequentially instead of planning the
entire path at once. The following example shows that planning
sequentially can result in a sub-optimal path.

EXAMPLE 1. Figure 1 shows a case where agent 𝑎1 has multi-
ple vertex constraints, represented as crosses on their vertices and
numbers that specify their timesteps. If we plan path segments se-
quentially from one goal to the next, we first find a path segment to
𝐶5 at timestep 4 and then plan the path segment to 𝐶9. Because of
the vertex constraints on 𝐵5, 𝐶5 and 𝐶6 at timestep 5, 𝑎1 can move
only to 𝐶4 at timestep 5. Then, at the next timestep, because of the
vertex constraints on 𝐶4 and 𝐶5 at timestep 6, 𝑎1 can move only to
𝐶3, and so on. Eventually, 𝑎1 moves back to 𝐶1 at timestep 8, and
thus can reach 𝐶9 at timestep 16 the earliest. However, if we plan
the entire path of 𝑎1 at once, 𝑎1 can reach 𝐶9 already at timestep 12
when following the blue arrows.

CBS-PC uses the Multi-Label A* (MLA*) algorithm [5, 9] to find
a minimum-cost path that satisfies all constraints of the CT node.
We extend MLA* to support completion timestep constraints: (1)
An agent can complete a goal only at a timestep that is larger than
the lower bound on the completion timestep of the goal, if provided,
and (2) MLA* prunes any low-level search nodes in which the agent
can reach a goal vertex only after the upper bound on the completion
timestep of the goal, if provided.

4.3 Theoretical Analysis
CBS-PC differs from CBS in how the low level plans paths and how
it addresses precedence conflicts. MLA* is complete and optimal [5].
Resolving precedence conflicts with completion timestep constraints
does not rule out any solution of the MAPF-PC problem and, for
every cost 𝑐, there is only a finite number of CT nodes with cost 𝑐 in
CBS-PC. With a proof similar to the one for CBS, we can therefore
show that CBS-PC is complete and optimal.
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Figure 2: The STN for the root CT node of the MAPF-PC in-
stance in Example 2.

4.4 Improvements
We now present three techniques for improving the efficiency of
CBS-PC. One of them is a specialized technique for MAPF-PC, and
the other two are adopted from existing work on improving CBS.

Constraint propagation: CBS-PC only adds completion timestep
constraints when it picks a precedence conflict to split. However,
additional completion timestep constraints can be inferred from the
existing ones in a way similar to how 𝜏 (𝑔 𝑗

𝑖
) ≤ 𝑡 − 1 is inferred in

completion timestep constraint (2).
When generating a CT node, CBS-PC builds a Simple Temporal

Network (STN) for the CT node [3]. An STN is a directed acyclic
graph ⟨𝑉 ,TC⟩. Each vertex 𝑣 ∈ 𝑉 represents a time point, called an
event, and 𝜏 (𝑣) represents the occurrence time of 𝑣 . Each STN has a
reference event 𝑥0 ∈ 𝑉 that represents the “beginning of time”, and
𝜏 (𝑥0) is conventionally set to 0. Each edge ⟨𝑣, 𝑣 ′⟩ ∈ TC, annotated
with an interval [𝐿𝐵,𝑈𝐵], indicates that 𝑣 must occur between 𝐿𝐵

and 𝑈𝐵 time units after 𝑣 ′, that is, 𝜏 (𝑣 ′) − 𝜏 (𝑣) ∈ [𝐿𝐵,𝑈𝐵]. To
construct the STN for a CT node, for each goal 𝑔 𝑗

𝑖
, CBS-PC adds

a vertex 𝑣
𝑗
𝑖

to the STN to represent the completion of 𝑔 𝑗
𝑖
. CBS-PC

adds edges to the STN in three cases:
(1) We use 𝑑 (𝑥,𝑦) to denote the minimum cost needed to move

from 𝑥 to 𝑦 in graph 𝐺 while ignoring constraints and con-
flicts. For each agent 𝑎𝑖 , CBS-PC adds edge ⟨𝑥0, 𝑣1𝑖 ⟩ with
interval [𝑑 (𝑠𝑖 , 𝑔1𝑖 .𝑙𝑜𝑐), +∞) to the STN, and, for each pair of
consecutive goals 𝑔 𝑗

𝑖
and 𝑔

𝑗+1
𝑖

, CBS-PC adds edge ⟨𝑣 𝑗
𝑖
, 𝑣

𝑗+1
𝑖
⟩

with interval [𝑑 (𝑔 𝑗
𝑖
.𝑙𝑜𝑐, 𝑔

𝑗+1
𝑖

.𝑙𝑜𝑐), +∞) to the STN.

(2) For each precedence constraint ⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T , CBS-PC adds

edge ⟨𝑣 𝑗
𝑖
, 𝑣

𝑗 ′

𝑖′ ⟩ with interval [1, +∞) to the STN.

(3) For each completion timestep constraint 𝜏 (𝑔 𝑗
𝑖
) > 𝑡 , CBS-

PC adds edge ⟨𝑥0, 𝑣 𝑗𝑖 ⟩ with interval [𝑡 + 1, +∞) to the STN.
Similarly, for each completion timestep constraint 𝜏 (𝑔 𝑗

𝑖
) ≤ 𝑡 ,

CBS-PC adds edge ⟨𝑥0, 𝑣 𝑗𝑖 ⟩ with interval [0, 𝑡] to the STN.
The lower and upper bounds on the completion timestep of each goal
in the STN can be computed using the Bellman-Ford algorithm. Each
lower and upper bound can be converted to a completion timestep
constraint. CBS-PC adds these constraints to the generated CT node
if the CT node does not contain them already.

EXAMPLE 2. Consider a MAPF-PC instance with three agents.
Agent 𝑎1 has two goals, and agents 𝑎2 and 𝑎3 both have one goal.
T = {⟨𝑔11, 𝑔

1
2⟩, ⟨𝑔

1
1, 𝑔

1
3⟩, ⟨𝑔

1
2, 𝑔

1
3⟩}. Figure 2 shows the corresponding

τ(g12) ≥ d(s1, g11 . loc)
τ(g12) < d(s1, g11 . loc) + 1

τ(g11) < d(s1, g11 . loc)

τ(g13) ≥ d(s1, g11 . loc) + 1 τ(g13) < d(s1, g11 . loc) + 1
τ(g11) < d(s1, g11 . loc)

τ(g13) ≥ d(s1, g11 . loc) + 2 τ(g13) < d(s1, g11 . loc) + 2
τ(g12) < d(s1, g11 . loc) + 1

⋯ ⋯

(a)

τ(g12) ≥ d(s1, g11 . loc) + 1
τ(g13) ≥ d(s1, g11 . loc) + 2

τ(g11) ≥ d(s1, g11 . loc)

⋯ ⋯

. . .

(b)

Figure 3: CTs of CBS-PC variants (with and without constraint
propagation) when solving the MAPF-PC instance in Exam-
ple 2.

STN for the root CT node. The four solid edges are due to Case (1),
and the three dashed edges are due to Case (2). We assume that
𝑑 (𝑠1, 𝑔11 .𝑙𝑜𝑐) > 𝑑 (𝑠2, 𝑔12 .𝑙𝑜𝑐) > 𝑑 (𝑠3, 𝑔13 .𝑙𝑜𝑐).

Figure 3a shows the CT of CBS-PC without constraint propa-
gation. The text next to edges describes the constraints added to
the CT nodes. Crossed-out CT nodes are pruned because CBS-PC
cannot find paths for some agents. Without constraint propagation,
CBS-PC needs to generate multiple CT nodes to resolve the prece-
dence conflict between each pair of agents because, in the root CT
node, 𝜏 (𝑔13) < 𝜏 (𝑔12) < 𝜏 (𝑔11). Figure 3b shows the CT of CBS-PC
with constraint propagation. The blue text next to the root CT node
shows the constraints generated from constraint propagation, which
impose lower bounds on the completion timesteps of goals. Since the
low-level planner are aware of these completion timestep constraints,
the paths in the root CT node do not exhibit the previously mentioned
precedence conflicts.

Disjoint splitting: Different from the standard splitting rule of
CBS, disjoint splitting [8] picks one conflicting agent, and then (1)
adds a constraint to one child CT node to prohibit this agent from
using the conflicting vertex or edge at the conflicting timestep and
(2) adds a constraint to the other child CT node to force this agent to
use the conflicting vertex or edge at the conflicting timestep, which
implies that no other agent can use the conflicting vertex or edge at
the conflicting timestep. Since disjoint splitting is able to speed up
different variants of CBS significantly, we use it in the context of
CBS-PC as well.

Target reasoning: A vertex conflict is a target conflict [7] if and
only if one of the conflicting agents, denoted as 𝑎𝑖 , terminates before
the conflicting timestep, denoted as 𝑡 . It is inefficient for CBS-PC
to resolve target conflicts with only vertex and edge constraints.
Instead, target reasoning [7] uses constraints 𝜏 (𝑔𝑙𝑖

𝑖
) > 𝑡 (the path

of 𝑎𝑖 needs to be replanned) and 𝜏 (𝑔𝑙𝑖
𝑖
) ≤ 𝑡 (the path of the other

conflicting agent needs to be replanned because only 𝑎𝑖 is allowed
to occupy 𝑔

𝑙𝑖
𝑖
.𝑙𝑜𝑐 at timestep 𝑡) to resolve target conflicts. Note that

𝑙𝑖 denotes the number of goals of agent 𝑎𝑖 .
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Figure 4: A two-agent MAPF-PC instance. Both agents have
two goals. Solid-line arrows represent the sequence of vertices
that agents need to visit, and dashed-line arrows represent the
precedence constraints between goals.

5 PBS WITH PRECEDENCE CONSTRAINTS
We now introduce a suboptimal but more scalable MAPF-PC algo-
rithm, called PBS-PC, which adopts the PBS algorithm for MAPF
to solve our MAPF-PC problem. We start with a naïve variant of
PBS for MAPF-PC, which assigns priorities to agents to resolve
conflicts. We explain why naïve PBS does not find solutions for a
simple MAPF-PC instance, which motivates us to introduce an ad-
vanced variant called PBS-PC, which resolves conflicts by assigning
priorities to goals.

5.1 Naïve PBS for MAPF-PC
Unlike CBS, PBS can be used to solve the MAPF-PC problem
without any change on the high level. On the low level, when PBS
plans for an agent, it uses MLA* to find a path that has the minimum
cost while avoiding vertex, edge, and precedence conflicts with the
paths of higher-priority agents. However, in MAPF-PC, planning
for one agent after another is likely to fail because of the complex
precedence constraints.

EXAMPLE 3. Consider the two-agent MAPF-PC instance shown
in Figure 4, where agents 𝑎1 and 𝑎2 have two goals each and
T = {⟨𝑔11, 𝑔

1
2⟩, ⟨𝑔

2
2, 𝑔

2
1⟩}, that is, the first goal of 𝑎1 must be com-

pleted before the first goal of 𝑎2 and the second goal of 𝑎1 must be
completed after the second goal of 𝑎2. In the root PT node, which has
no priority ordering between 𝑎1 and 𝑎2, PBS plans for each agent
individually. We have 𝜏 (𝑔11) = 5 and 𝜏 (𝑔12) = 3, which is a prece-
dence conflict. PBS splits the root PT node into two child nodes. In
one child node, it extends the priority ordering with 𝑎1 ≺ 𝑎2, mean-
ing that it plans the path of 𝑎1 first. This path has 𝜏 (𝑔11) = 5 and
𝜏 (𝑔21) = 8. PBS cannot find a path for 𝑎2 because it is impossible
to satisfy 𝜏 (𝑔12) > 5 and 𝜏 (𝑔22) < 8 simultaneously. In the other
child node, it extends the priority ordering with 𝑎2 ≺ 𝑎1, mean-
ing that it plans the path of 𝑎2 first. This path has 𝜏 (𝑔12) = 3 and
𝜏 (𝑔22) = 8. PBS cannot find a path for 𝑎1 because it is impossible to
satisfy 𝜏 (𝑔11) < 3. Thus, naïve PBS fails immediately for this simple
MAPF-PC instance.

5.2 PBS-PC
In Example 3, PBS cannot solve the MAPF-PC instance because im-
posing priority orderings on agents is insufficient to resolve conflicts
caused by complex precedence constraints among goals. We thus
propose PBS-PC, which assigns priority orderings to pairs of goals
and plans the path segment for one goal at a time.

Algorithm 1 shows the high level of PBS-PC. We use Γ to denote
the list of the goals of all agents. Like PBS, PBS-PC performs a

Algorithm 1: High-Level Search of PBS-PC

1 ≺≺≺Root← ∅;
2 foreach pair of consecutive goals 𝑔 𝑗

𝑖
and 𝑔

𝑗+1
𝑖

do
3 ≺≺≺Root← ≺≺≺Root ∪ {𝑔 𝑗𝑖 ≺ 𝑔

𝑗+1
𝑖
};

4 foreach ⟨𝑔 𝑗
𝑖
𝑔
𝑗 ′

𝑖′ ⟩ ∈ T do
5 ≺≺≺Root← ≺≺≺Root ∪ {𝑔 𝑗𝑖 ≺ 𝑔

𝑗 ′

𝑖′ };

6 Root.paths[𝑔 𝑗
𝑖
] ← empty for each goal 𝑔 𝑗

𝑖
;

7 STACK← {Root};
8 while STACK is not empty do
9 𝑁 ← STACK.pop();

10 succ← UpdatePath(𝑁 ); // Algorithm 2
11 if succ is false then
12 continue;

13 if 𝑁 .conflict is empty then
14 return 𝑁 .𝑝𝑎𝑡ℎ𝑠;

15 (𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ) ← 𝑁 .𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ;

16 foreach 𝑔 ∈ (𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ) do
17 𝑔′ ← the goal in {𝑔 𝑗

𝑖
, 𝑔

𝑗 ′

𝑖′ } \ {𝑔};
18 𝑁 ′ ← 𝑁 ;
19 ≺≺≺𝑁 ′ ← ≺≺≺𝑁 ∪ {𝑔 ≺ 𝑔′};
20 𝑁 ′.conflict← empty;
21 foreach 𝑔′′ ∈ ({𝑔′′ | 𝑔′ ≺𝑁 ′ 𝑔′′} ∪ {𝑔′}) do
22 𝑁 ′.𝑝𝑎𝑡ℎ𝑠 [𝑔′′] ← empty;

23 Insert 𝑁 ′ into STACK;

24 return “No Solution”;

depth-first search on the high level and stores all generated but
not yet expanded PT nodes in a stack. Unlike PBS, the root PT
node of PBS-PC does not always have an empty priority ordering.
PBS-PC initializes the priority ordering (Lines 2-5) by (1) adding
𝑔
𝑗
𝑖
≺ 𝑔

𝑗+1
𝑖

to ≺≺≺Root for each pair of consecutive goals of the same

agent and (2) adding𝑔 𝑗
𝑖
≺ 𝑔

𝑗 ′

𝑖′ to≺≺≺Root for each precedence constraint

⟨𝑔 𝑗
𝑖
, 𝑔

𝑗 ′

𝑖′ ⟩ ∈ T between the goals of two different agents. PBS-PC
begins with an empty path segment for each goal in the root PT
node (Line 6 of Algorithm 1). When expanding a PT node, PBS-PC
invokes Algorithm 2 to plan path segments (Line 10). Algorithm 2
plans for the goals in a topologically sorted order according to the
priority ordering (Line 1) and plans for one goal at a time until:

(1) PBS-PC cannot find a path segment for a goal (Lines 5 to 6),
and the PT node is pruned on Lines 11-12 of Algorithm 1;

(2) PBS-PC finds a conflict among non-empty path segments
(Lines 9 to 11), and the PT node is split into two child PT
nodes on Lines 15 to 23 of of Algorithm 1; or

(3) the path segments for all goals are found (Line 12), and PBS-
PC returns a solution for the MAPF-PC instance on Lines 13-
14 of Algorithm 1.

Function FindConflictingGoal(N , g) returns a goal whose planned
path segment has vertex or edge conflicts with 𝑔 or returns empty
if no such goal exists. When generating a child PT node, PBS-PC
extends the priority ordering of the parent PT node with a new pair



Algorithm 2: UpdatePath(PT node 𝑁 )

1 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑜𝑟𝑡 (Γ,≺≺≺𝑁 );
2 foreach 𝑔 ∈ Γ do
3 if 𝑁 .paths[𝑔] is empty then
4 𝑝 ← PlanPath(𝑁,𝑔); // Algorithm 3
5 if 𝑝 is empty then
6 return false;

7 𝑁 .paths[𝑔] ← 𝑝;

8 𝑔′ ← FindConflictingGoal(𝑁,𝑔);
9 if 𝑔′ is not empty then

10 𝑁 .conflict← (𝑔,𝑔′);
11 return true ;

12 return true;

Algorithm 3: PlanPath(PT node 𝑁 , goal 𝑔 𝑗
𝑖
)

1 𝑃 ← {𝑁 .𝑝𝑎𝑡ℎ𝑠 [𝑔] | 𝑔 ≺𝑁 𝑔
𝑗
𝑖
};

2 if 𝑗 > 1 then
3 𝑡0 ← CompletionTimestep(𝑁 .plan[𝑔 𝑗−1

𝑖
]);

4 𝑙𝑜𝑐0 ← 𝑔
𝑗−1
𝑖

.𝑙𝑜𝑐;

5 else
6 𝑡0 ← 0;
7 𝑙𝑜𝑐0 ← 𝑠𝑖 ;

8 𝑇 ← max{CompletionTimestep(𝑔) | ⟨𝑔,𝑔 𝑗
𝑖
⟩ ∈ T };

9 𝑝 ← a minimum-cost path for goal 𝑔 𝑗
𝑖

that starts at vertex
𝑙𝑜𝑐0 at timestep 𝑡0, ends at vertex 𝑔

𝑗
𝑖
.𝑙𝑜𝑐 after timestep 𝑇 ,

and does not conflict with any path in 𝑃 (or empty if no such
path exists);

10 return 𝑝;

of goals. Let 𝑔′ denote the goal of the lower priority in the new
ordered pair. PBS-PC empties the path segments of 𝑔′ and all paths
that are of lower priority than it.

Algorithm 3 shows the algorithm for planning the path segment
for goal 𝑔 𝑗

𝑖
. If 𝑗 = 0, that is, 𝑔 𝑗

𝑖
is the first goal of the agent, the

start timestep and the start vertex of search are set to 0 and the
start vertex of the agent, respectively. Otherwise, the start timestep
and the start vertex are set to the completion timestep and the goal
vertex of the immediate previous goal of the agent, respectively. The
earliest timestep when 𝑎𝑖 is allowed to complete 𝑔 𝑗

𝑖
can be computed

by checking the completion timesteps of all the goals that need to
be completed before 𝑔 𝑗

𝑖
(whose path segments are already planned

because goals are planned in a topologically sorted order).
In any PT node of PBS-PC, there is no precedence conflict be-

tween any two non-empty path segments because Algorithm 3 only
finds path segments that satisfy all precedence constraints. The re-
turned solution does not contain a vertex or edge conflict because,
if there is one, the conflict will be found in Line 8 of Algorithm 2,
and PBS-PC would not return the set of paths as a solution. There-
fore, solutions returned by PBS-PC are conflict-free. Similar to PBS,
PBS-PC is neither complete nor optimal.

(a) random-32-32-20 (b) warehouse-10-20-10-2-1

Figure 5: The grid maps of the MAPF-PC instances used in the
experimental evaluation.

6 EXPERIMENTAL EVALUATION
In this section, we compare the results of different variants of CBS-
PC, PBS, and PBS-PC on MAPF-PC instances with four-neighbor
grid maps. The variants of CBS-PC are CBS-PC, CBS-PC-c, CBS-
PC-t, CBS-PC-d and CBS-PC-dct, where c adds constraint prop-
agation, d adds disjoint splitting, and t adds target reasoning. All
algorithms were implemented in C++2 and share the same code base
as much as possible. We ran all experiments on t2.large AWS EC2
instances with 8GB of memory. The time limit for solving each
MAPF-PC instance was five minutes.

To generate a MAPF-PC instance, we randomly generated the
start vertex of each agent and a set of goal vertices. Then, we began
with an empty precedence constraint set T , repeatedly picked a
random precedence constraint and added it to T if it is not in T and
will not introduce cycles until the number of precedence constraints
reaches the given number. Then, we used the token passing algo-
rithm [11] to greedily assign goals and generate the goal sequence
for each agent.

We picked two grid maps from the MAPF benchmark [16]: random-
32-32-20 and warehouse-10-20-10-2-1 (shown in Figure 5). For each
grid map, we ran two sets of experiments: (1) MAPF-PC instances
with different numbers of agents (ranging from 30 to 100), 200 goals,
and 120 precedence constraints. (2) MAPF-PC instances with dif-
ferent numbers of precedence constraints (ranging from 80 to 280),
200 goals, and 60 agents. For each number of agents or precedence
constraints, we generated 50 random instances.

Comparing variants of CBS-PC: Figures 6 and 7 show the
results for the CBS-PC variants. The success rate of an algorithm
is the percentage of MAPF-PC instances that it solves within the
time limit. For the CBS-PC variants without target reasoning, CBS-
PC-d almost always had slightly higher success rates than CBS-PC.
CBS-PC-c had similar or slightly worse success rates than the other
two variants when the number of precedence constraints was less
than 200 because the computational overhead outweighs the benefit
of the technique. However, it had better success rates than the other
two variants when the number of precedence constraints was large
enough (namely, ≥ 240) because constraint propagation significantly
reduced the number of precedence conflicts that need to be resolved.

The CBS-PC variants with target reasoning, CBS-PC-t, and CBS-
PC-dct had better success rate than the other three variants in most
of the experiments. CBS-PC-dct had better success rates than CBS-
PC-t when the number of precedence constraints is large but similar
success rates otherwise. We show the runtimes of CBS-PC-dct and
CBS-PC-t averaged over all instances solved by both of them. CBS-
PC-dct and CBS-PC-t had similar average runtimes except in some

2https://github.com/HanZhang39/MAPF-PC

https://github.com/HanZhang39/MAPF-PC
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Figure 6: Results of CBS-PC variants for random-32-32-20.
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Figure 7: Results of CBS-PC variants for warehouse-10-20-10-
2-1.

instances with a large number of precedence constraints, where CBS-
PC-dct solved the instances much faster. We omit the runtime results
of the other three variants because they solved too few instances
within the time limit.

Comparing PBS and PBS-PC: Figures 8 and 9 show the results
for PBS and PBS-PC. In general, PBS-PC outperformed PBS in
terms of both the success rate and the runtime. The success rates of
PBS stayed similar or even increased when the number of agents
increased. However, the success rates of PBS quickly dropped as
the number of precedence constraints increased, which shows that
PBS was not good at solving MAPF-PC instances with complex
precedence constraints.

Comparing CBS-PC and PBS-PC: In general, PBS-PC out-
performed all CBS-PC variants in terms of both success rate and
runtime. In Figures 8e, 8f, 9e, and 9f, we show the suboptimality re-
sults for PBS-PC. The dots show the suboptimality ratios of PBS-PC
on MAPF-PC instances that were solved by some variant of CBS-PC
and the lines show the average suboptimality ratios. The suboptimal-
ity ratios of PBS-PC were on average less than 1.1 in most cases
and around 1.2 in the worst case. The average suboptimality ratios
of PBS-PC increased as the number of agents increased because
PBS-PC is more likely to add priority ordering due to the increasing
number of vertex and edge conflicts, which increase its subopti-
mality. Interestingly, the average suboptimality ratios of PBS-PC
decreased as the number of precedence constraints increased. It was
because agents were less likely to have vertex or edge conflicts when
they need to wait longer due to the increasing number of precedence
constraints.

Scalability of PBS-PC: We ran two additional experiments for
only PBS-PC on warehouse-10-20-10-2-1 to see how PBS-PC scales
on difficult instances: (1) MAPF-PC instances with different num-
bers of agents 𝑚 (ranging from 100 to 500), where the numbers
of goals were 2𝑚 and the numbers of precedence constraints were
𝑚, and (2) MAPF-PC instances with different numbers of goals 𝑛
(ranging from 800 to 1800), the numbers of precedence constraints
were 0.5𝑛 and the numbers of agents were always 200. Figure 10
shows the results. PBS-PC solved all instances with up to 300 agents
in experiment (1) and all instances with 800 goals in experiment (2).

7 RELATED WORK
Numerous algorithms have been developed to solve multi-task multi-
agent path finding problems by assigning tasks (in form of goal
locations) to agents with the purpose of minimizing the execution
time. One representative approach is to formulate the problem as
Vehicle Routing Problem with Time Windows (VRPTW) and mini-
mize the execution time over the entire time horizon [2, 6]. A survey
of task-assignment algorithms can be found in [4]. However, most
of these algorithms ignore inter-agent collisions and thus cannot
be directly executed in safety-critical scenarios. Moreover, as our
MAPF-PC algorithms are capable of planning with goal vertex se-
quences and precedence constraints, they can be used in conjunction
with most of the aforementioned task-assignment algorithms to gen-
erate collision-free paths with respect to the assigned goal vertex
sequences.

Among all algorithms that aim at planning collision-free paths
for streams of tasks, the algorithms in [2, 13] are able to handle
precedence constraints between tasks and thus are most related to
ours. [2] presents a four-level algorithm that is able to solve the
general Precedence-Constrained multi-agent Task Assignment and
Path-Finding (PC-TAPF) problem, although it is demonstrated only
on assembly scenarios. Its first level iteratively searches for promis-
ing task assignments, and the other three levels plan collision-free
paths based on the task assignment. As the latter solves the same
problem as MAPF-PC, It is neither complete nor optimal since it
plans each path segment in a myopic way, which does not con-
sider the feasibility or optimality of achieving the following tasks.
In comparison, our CBS-PC algorithm generates provably optimal
plans. While both the algorithm in [2] and PBS-PC are suboptimal,
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Figure 8: Results of PBS-PC and PBS for random-32-32-20.

PBS-PC is able to plan for 300 agents with 800 goals while the
algorithm in [2] can merely plan for 40 agents with 60 tasks in the
same runtime. Our CBS-PC algorithm can be integrated with its task
assignment module (i.e., first-level solver) to create an optimal PC-
TAPF algorithm. [13] also presents a complete algorithm for solving
multi-task multi-robot path finding problem with precedence con-
straints. However,this algorithm relies on the assumption that each
task can only have one precedence constraint, which prevents the
algorithm from solving realistic scenarios with complex precedence
constraints. For example, modeling that some packages that need
to be delivered to their goal locations first can introduce multiple
precedence constraints.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the MAPF-PC algorithms CBS-PC and
PBS-PC. CBS-PC is complete and optimal, and we proposed several
improvements for it. PBS-PC is incomplete and suboptimal but
efficient in practice. Our experimental results showed that the most
advanced CBS-PC variants scale to dozens of agents and hundreds
of goals and precedence constraints and PBS-PC scales to hundreds
of agents, around one thousand goals, and hundreds of precedence
constraints.

An interesting direction for future work is to extend the MAPF-PC
problem with other types of inter-goal constraints, such as simple
temporal constraints between the completion timesteps of goals.
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Figure 9: Results of PBS-PC and PBS for warehouse-10-20-10-
2-1.
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Figure 10: Scalability results of PBS-PC for warehouse-10-20-
10-2-1.

Another direction is to study different types of MAPF-PC algorithms,
such as bounded sub-optimal or anytime algorithms.
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